Carbon Nanotubes Could Lengthen Battery Life

Carbon nanotubes — tiny tubular structures composed of a single layer of carbon atoms—could lengthen the life of batteries, according to new research. Findings published in the current issue of Physical Review Letters suggest that the diminutive tubes can hold twice as much energy as graphite, the form of carbon currently used as an electrode in many rechargeable lithium batteries.

The reduction and oxidation reactions that occur at the electrodes of batteries produce a flow of electrons that generate and store energy. Conventional graphite electrodes can reversibly store one lithium ion for every six carbon atoms. To investigate the storage capacity of carbon nanotubes, Otto Zhou and colleagues at the University of North Carolina, Chapel Hill, first created bundles of the single-walled straws. They then shortened the tubes and opened their ends by immersing them in strong acids. Subsequent tests of their energy-holding potential, conducted using electrochemistry and nuclear magnetic resonance spectroscopy, revealed an electrical storage capacity approximately double that of graphite. In explanation, the scientists note that the tubes’ open ends facilitated the diffusion of lithium atoms into their interiors. Indeed, the tiny straws managed to reversibly store one charged ion for every three carbon atoms.

As with many findings in the nascent field of nanotechnology, commercial devices based on the work remain a ways off. “We’ll have to work on and overcome other practical issues before we can make real devices,” Zhou says, “but we are very optimistic.”

Media Contact

Sarah Graham Scientific American

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors