Carbon Nanotubes Could Lengthen Battery Life

Carbon nanotubes — tiny tubular structures composed of a single layer of carbon atoms—could lengthen the life of batteries, according to new research. Findings published in the current issue of Physical Review Letters suggest that the diminutive tubes can hold twice as much energy as graphite, the form of carbon currently used as an electrode in many rechargeable lithium batteries.

The reduction and oxidation reactions that occur at the electrodes of batteries produce a flow of electrons that generate and store energy. Conventional graphite electrodes can reversibly store one lithium ion for every six carbon atoms. To investigate the storage capacity of carbon nanotubes, Otto Zhou and colleagues at the University of North Carolina, Chapel Hill, first created bundles of the single-walled straws. They then shortened the tubes and opened their ends by immersing them in strong acids. Subsequent tests of their energy-holding potential, conducted using electrochemistry and nuclear magnetic resonance spectroscopy, revealed an electrical storage capacity approximately double that of graphite. In explanation, the scientists note that the tubes’ open ends facilitated the diffusion of lithium atoms into their interiors. Indeed, the tiny straws managed to reversibly store one charged ion for every three carbon atoms.

As with many findings in the nascent field of nanotechnology, commercial devices based on the work remain a ways off. “We’ll have to work on and overcome other practical issues before we can make real devices,” Zhou says, “but we are very optimistic.”

Media Contact

Sarah Graham Scientific American

Alle Nachrichten aus der Kategorie: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Detecting early-stage failure in electric power conversion devices

Researchers from Osaka University use non-destructive acoustic monitoring to identify the earliest stages of failure in silicon carbide power electronics, which will help in the design of more-durable power devices….

Build your own AI with ISAAC for error detection in production

Fraunhofer IDMT has developed a software tool for quality inspectors based on Artificial Intelligence (AI), which automates and simplifies the analysis of industrial sounds, for example in welding processes. Thanks…

BEAT-COVID – advanced therapy strategies against the pandemic

The present SARS-coronavirus-2 pandemic with all its effects on society – both health and economic – highlights the urgency of developing new therapies for COVID-19 treatment. At the same time,…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close