High-performance computing may improve combustion efficiency

Rising oil prices have revved momentum to develop more efficient combustion systems. But instrumental to this goal is a need to achieve greater understanding of the complex chemical reactions involved in combustion processes.


In one of the largest simulations ever brought to bear on this problem, researchers at Pacific Northwest National Laboratory performed quantum chemical calculations to accurately predict the heat of formation of octane, a key component of gasoline.

The calculation–performed using 1,400 parallel processors–took only 23 hours to complete and achieved a sustained efficiency of 75 percent, compared to the 5 to 10 percent efficiency of most codes. For comparison, the best one-processor desktop computer would have required a three and a half years and 2.5 terabytes of memory to run the calculation.

These pioneering calculations also helped identify the level of theory needed for subsequent efforts to reliably predict the heat of formation of larger alkanes in diesel fuel, for which there is very little experimental data, and the heat of formation of key reactive intermediates, such as alkyl and alkoxy radicals, for which there is no experimental data.

Media Contact

Brenda Pittsley EurekAlert!

More Information:

http://www.pnl.gov

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors