Tiny probes could sail to outer planets with the help of low-power lasers
Space travel can be agonizingly slow: For example, the New Horizons probe took almost 10 years to reach Pluto. Traveling to Proxima Centauri b, the closest habitable planet to Earth, would require thousands of years with even the biggest rockets. Now, researchers calculate in ACS’ Nano Letters that low-power lasers on Earth could launch and maneuver small probes equipped with silicon or boron nitride sails, propelling them to much faster speeds than rocket engines.
Instead of catching wind, like the sails on boats, “laser sails” would catch laser beams and could, in principle, push spacecraft to nearly the speed of light. Scientists have been working on this concept for a while. For example, one privately funded project called the Breakthrough Starshot initiative aims to send a small, sailed probe weighing about a gram to Proxima Centauri b with a flight taking only 20 years. It would be propelled to 20% of light speed by a 100 GW, kilometer-square laser array. Ho-Ting Tung and Artur Davoyan wondered if much lower-power, smaller laser arrays could find use in applications where conventional electric and chemical rockets are now used. The lasers might someday be able to adjust the orbit of satellites after launch or propel tiny sailed probes on interplanetary or interstellar missions, without requiring large amounts of fuel.
The researchers performed calculations to show that even lasers with powers of about 100 kW and array sizes of about a meter could power a 1-gram probe at velocities far exceeding the current record, with only minutes to hours of laser illumination. According to their calculations, the lasers could maneuver small probes between different Earth orbits in only a day, which is not possible with current electrical and chemical rockets. The team determined that the best materials for the laser sails, which allowed high reflectivity and rapid cooling, were silicon nitride and boron nitride structured at the nanoscale. Finally, the researchers calculated that these tiny laser-propelled probes could travel fast enough to escape the solar system, reaching 5 times higher velocities than the New Horizons probe. These prototype sailed spacecraft, driven by low-power lasers, could pave the wave for fast space exploration and future interstellar flight, the researchers say.
The authors acknowledge funding from NASA, the Air Force Office of Scientific Research, UCLA and the Hellman Society of Fellows.
For more of the latest research news, register for our upcoming meeting, ACS Spring 2022. Journalists and public information officers are encouraged to apply for complimentary press registration by emailing us at newsroom@acs.org.
The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS’ mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and all its people. The Society is a global leader in promoting excellence in science education and providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a leader in scientific information solutions, its CAS division partners with global innovators to accelerate breakthroughs by curating, connecting and analyzing the world’s scientific knowledge. ACS’ main offices are in Washington, D.C., and Columbus, Ohio.
To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.
Journal: Nano Letters DOI: 10.1021/acs.nanolett.1c04188 Article Title: Low-Power Laser Sailing for Fast-Transit Space Flight Article Publication Date: 31-Jan-2022
Media Contact
Katie Cottingham
American Chemical Society
k_cottingham@acs.org
Office: 301-775-8455
All latest news from the category: Physics and Astronomy
This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.
innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.
Newest articles
Breakthrough in magnetism that could transform quantum computing and superconductors
Researchers discover new magnetic and electronic properties in kagome magnet thin films. A discovery by Rice University physicists and collaborators is unlocking a new understanding of magnetism and electronic interactions…
NASA to launch innovative solar coronagraph to Space Station
NASA’s Coronal Diagnostic Experiment (CODEX) is ready to launch to the International Space Station to reveal new details about the solar wind including its origin and its evolution. Launching in…
Boosting efficiency in mining with AI and automation
“Doing instead of procrastinating”. This is the AI strategy presented by Prof. Constantin Haefner, Director of the Fraunhofer Institute for Laser Technology ILT, at the “AKL’24 – International Laser Technology…