Let the light shine through: and no more spitting in your dive mask.

Fogged up glasses, windscreens and bathroom mirrors may be a thing of the past.

Researchers have invented a new, permanent, multi-purpose coating technology that will prevent your spectacles, car windscreen or bathroom mirror fogging up ever again. The coating, called XeroCoat, also cuts out unwanted reflections from glass, letting more light through. Making it ideal for spectacles and improving the performance of solar cells and glasshouses.

University of Queensland physicists Michael Harvey and Paul Meredith developed this technology based upon thin films of nano-porous silica; this means that “the coating is a layer of glass full of tiny invisible bubbles, just like the foam on beer,” said Mr Harvey. “Because it’s made of glass it’s as hard as glass,” he said, giving the added benefit of a hard coating on items to prevent or reduce scratching. The whole production process is extremely simple, very low-cost and environmentally friendly. Queensland’s Sustainable Energy Innovation Fund, administered by the Environmental Protection Agency, recently awarded the team a grant to further develop the new coating.

Their support will allow trials of this technology to improve the efficiency of solar cells, with the first improved prototypes expected by January 2005. This research also won Michael Harvey a place amongst 15 other early-career scientists who have presented their work to the public and media as part of Fresh Science 2004. The winner will receive a study tour to the UK courtesy of the British Council.

Dr Meredith said existing technologies for applying anti-reflection coatings were all too expensive for the wide areas required for solar collector surfaces. “This innovation is set to revolutionise the use of solar energy by making it cheaper and more effective,” he said. Mr Harvey said that the new coating can be applied to many surfaces, including glass and plastics, and so permanently prevent these items fogging up. Current research is developing this anti-fogging, anti-reflection and scratch resistant coating for products such as spectacles, sunglasses, windscreens and bathroom mirrors.

The University of Queensland’s commercialisation arm, UniQuest, has formed a company, XeroCoat Pty Ltd, to develop and market this technology, offering a better coating solution than those currently available. As the technology develops, Mr Harvey expects that many more applications will emerge, including: enhancing food production by improving the function of greenhouses; scratch-proofing plastics; and improving the performance of high-rise building windows.

“One day soon we will see XeroCoat on products ranging from spectacles, swim and ski goggles to car windscreens and even bathroom mirrors. We are taking nanotechnology out of the lab and putting it in the bathroom,” Mr Harvey said.

Media Contact

Niall Byrne alfa

Further information:

http://www.freshscience.org

All news from this category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to the Homepage

Comments (0)

Write comment

Latest posts

Seawater as an electrical cable !?

Wireless power transfers in the ocean For drones that can be stationed underwater for the adoption of ICT in mariculture. Associate professor Masaya Tamura, Kousuke Murai (who has completed the…

Rare quadruple-helix DNA found in living human cells with glowing probes

New probes allow scientists to see four-stranded DNA interacting with molecules inside living human cells, unravelling its role in cellular processes. DNA usually forms the classic double helix shape of…

A rift in the retina may help repair the optic nerve

In experiments in mouse tissues and human cells, Johns Hopkins Medicine researchers say they have found that removing a membrane that lines the back of the eye may improve the…

Partners & Sponsors

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close