The Sun`s Twisted Mysteries

Solar physicists at the Mullard Space Science Laboratory (MSSL, University College London) in Surrey have found new clues to the thirty year old puzzle of why the Sun ejects huge bubbles of electrified gas, laced with magnetic field, known as coronal mass ejections (CMEs). In a paper published this month in the Journal of Solar Physics, they explain that the key to understanding CMEs, which can cause electricity black outs on Earth, may be due to twisted magnetic fields originating deep within the heart of the Sun.

CMEs are violent solar eruptions which travel at 1000 times the speed of Concorde and contain more mass then Mt. Everest. They have proved hazardous to modern technology, seen most dramatically in 1989 when a CME magnified the solar wind, which then slammed into the Earth. This caused widespread blackouts, which cost the Canadian national grid several million of pounds in damage to their systems. On the more aesthetic side, CMEs are also responsible for the northern (and southern) lights, Aurora Borealis.

Dr. Lucie Green of MSSL says, `Ultimately we need to know why CMEs occur so that one day we will be able to predict them just like we do with the weather on Earth. This is the new science of Space Weather.`

CMEs are seen when the Sun is artificially eclipsed and they contain beautifully twisted structures. Tracing them back to their solar origin reveals very twisted structures on the surface of the Sun too. This twist is contained in the Sun`s magnetic field and, just like a stretched elastic band, it contains energy, which then blasts the CME into space.

Until recently the source of the twist (which is known more precisely as helicity) has not been known. There are two options, the first being that it is created at the surface of the Sun. Now however, a group of scientists at MSSL, with colleagues in France and Argentina, have studied CME source regions using data from the international SoHO and Yohkoh satellites, and found that the second, more likely explanation, is that the magnetic field becomes charged with helicity, or twist, deep within the Sun. Here, the gas is constantly rising and falling due to the heat created by the fusion furnace at the Sun`s core. Indeed, it may even be related to the creation of the magnetic field itself, known as the solar dynamo.

Dr. Green says, `We have only known about CMEs for the last 30 years. The UK plays a leading role in solar physics and these new results are helping us make substantial advancements in our understanding of these beautiful, but potentially hazardous, phenomena.`

Media Contact

Julia Maddock alfa

All news from this category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to the Homepage

Comments (0)

Write comment

Latest posts

Researchers confront optics and data-transfer challenges with 3D-printed lens

Researchers have developed new 3D-printed microlenses with adjustable refractive indices – a property that gives them highly specialized light-focusing abilities. This advancement is poised to improve imaging, computing and communications…

Research leads to better modeling of hypersonic flow

Hypersonic flight is conventionally referred to as the ability to fly at speeds significantly faster than the speed of sound and presents an extraordinary set of technical challenges. As an…

Researchers create ingredients to produce food by 3D printing

Food engineers in Brazil and France developed gels based on modified starch for use as “ink” to make foods and novel materials by additive manufacturing. It is already possible to…

Partners & Sponsors

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close