CIC nanoGUNE reaches new depths in infrared nanospectroscopy

Illustration of subsurface infrared nanoimaging. Credit: CIC nanoGUNE

Optical spectroscopy with infrared light, such as Fourier transform infrared (FTIR) spectroscopy, allows for chemical identification of organic and inorganic materials.

The smallest objects which can be distinguished with conventional FTIR microscopes have sizes on the micrometre-scale. Scientists at CIC nanoGUNE (San Sebastian), however, employed nano-FTIR to resolve objects, which can be as small as a few nanometres.

In nano-FTIR (which is based on near-field optical microscopy), infrared light is scattered at a sharp metallized tip of a scanning-probe microscope.

The tip is scanned across the surface of a sample of interest and the spectra of scattered light are recorded using Fourier transform detection principles.

Recording of the tip-scattered light yields the sample's infrared spectral properties and thus the chemical composition of an area located directly below the tip apex.

Because the tip is scanned across the sample surface, nano-FTIR is typically considered to be a surface-characterization technique.

Importantly though, the infrared light that is nano-focussed by the tip does not only probe a nanometric area below the tip, but in fact probes a nanometric volume below the tip.

Now the researchers at CIC nanoGUNE showed that spectral signatures of materials located below the sample surface can be detected and chemically identified up to a depth of 100 nm.

Furthermore, the researchers showed that nano-FTIR signals from thin surface layers differ from that of subsurface layers of the same material, which can be exploited for determination of the materials distribution within the sample.

Remarkably, surface layers and subsurface layers can be distinguished directly from experimental data without involving time-consuming modelling. The findings have recently been published in Nature Communications.

Media Contact

Irati Kortabitarte
i.kortabitarte@elhuyar.eus

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors