A new X-ray spectroscopic tool for probing the interstellar medium

Astronomy & Astrophysics is publishing the first clear detection of signatures long sought in the spectra of X-ray astronomical sources, the so-called EXAFS signatures, standing for “Extended X-ray Absorption Fine Structure”.

EXAFS is a powerful tool for studying the structure of grains in the interstellar medium (ISM). It gives a more detailed picture of the composition and structure of amorphous grains in the ISM.

Astronomy & Astrophysics is publishing the first clear detection of signatures long sought in the spectra of X-ray astronomical sources. These signatures, the so-called EXAFS standing for “Extended X-ray Absorption Fine Structure”, were observed with an X-ray spectroscopic technique that is common in materials sciences.

Up to now, EXAFS studies of astronomical sources have been unsuccessful because of the weak X-ray signals received from celestial objects. Using the Reflection Grating Spectrometer (RGS) onboard the XMM-Newton satellite, Dutch astronomers C.P. de Vries and E. Costantini have obtained high-quality X-ray spectra of Scorpius X-1, one of the brightest X-ray sources in the sky, located about 2800 parsecs from the Earth. For the first time, they have found clear evidence of an EXAFS signature coming from the dust seen toward a celestial source.

EXAFS is a powerful tool for studying the structure of grains in the interstellar medium (ISM). It is based on the phenomenon that X-ray photons can eject electrons from atoms inside solid particles, which in turn can be backscattered onto the emitting atom by atoms in their immediate neighborhood. This causes characteristic sinusoidal absorption features in the X-ray spectrum of a distant source that depend on the structure of the absorbing solid material.

Another, perhaps better known, technique of probing ISM dust, infrared spectroscopy, can also be used to study crystalline dust. However, EXAFS has a major advantage over infrared spectroscopy, in that it can probe the solid matter along the line-of-sight at the level of the atomic structure, even for irregular amorphous materials.

Infrared spectroscopy, by comparison, provides information at the mineralogical level. As a result, using EXAFS, astronomers can obtain a very detailed sampling of the composition and atomic structure of the dust along the line-of-sight. EXAFS gives a more detailed picture of the chemical composition and atomic structure of amorphous grains than is possible with infrared spectroscopy.

Media Contact

Dr. Jennifer Martin EurekAlert!

More Information:

http://www.obspm.fr

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors