Research could lead to dramatic improvement in scanning for serious diseases

During the four-year project a team of scientists, engineers and mathematicians at the University of Bath will undertake a fundamental revision of electron spin resonance imaging, a technique for body scanning.

They hope that electron spin resonance imaging will eventually take a three-dimensional “snapshot” image of the chemical state of an organ such as the heart. This would be an immensely important advance, and could lead to new treatments for serious illnesses.

At present instruments do not have the sensitivity or speed to do this but using the latest research into measurement techniques and data analysis could improve the sensitivity of the machinery by 100 times or more. This could, in turn, allow some images to be recorded 10,000 times faster, or with 10,000 times more spatial information.

Even relatively modest improvements in the technical performance of electron spin resonance imaging instruments are potentially very important to medical research scientists.

The Bath team will be working closely with two such experts at the University of the West of England, Bristol and Cardiff Medical School to develop the new technologies.

Electron spin resonance imaging instruments work in a similar way to magnetic resonance imaging (MRI) body scanners that are already widely used in hospitals. However, whereas MRI scanners use the magnetic properties of the protons in water to generate an image, electron spin resonance instruments use the magnetic properties of electrons.

This fundamental difference makes electron spin resonance more suited to imaging chemical processes than MRI. However, it also makes it technically much more difficult, and has so far restricted its use to the research laboratory.

The project’s initiator, Dr Stephen Bingham, of the University of Bath’s Department of Physics, said: “The enormous potential of electron spin resonance imaging has been recognised in the scientific community for some time – however, this promise remains largely unrealised.

“The substantial improvement in performance that is necessary will not come from tinkering with current technology, so our task is to bring fresh thinking to this problem. We will be adapting several technologies that have been developed in other fields of science and engineering and applying them to electron spin resonance imaging for the first time.”

Dr Bingham is working with Dr Daniel Wolverson and Professor John Davies in the Department of Physics, with Professor Dave Rodger and Dr Chris Clarke of the Department of Electronic & Electrical Engineering, and with the mathematician Professor Chris Jennison, Dean of the Faculty of Science. They are working with the University’s Research & Innovation Services to ensure the future wide availability of the technology through its commercialisation. Biomedical evaluation will be done in collaboration with Professor Simon Jackson, at the Centre for Research in Biomedicine, University of the West of England, Bristol, and Dr Philip James of the Wales Heart Research Institute, Cardiff University.

The project is funded by the Biotechnology and Biological Sciences Research Council and the Engineering and Physical Sciences Research Council.

Media Contact

Tony Trueman alfa

Alle Nachrichten aus der Kategorie: Medical Engineering

The development of medical equipment, products and technical procedures is characterized by high research and development costs in a variety of fields related to the study of human medicine.

innovations-report provides informative and stimulating reports and articles on topics ranging from imaging processes, cell and tissue techniques, optical techniques, implants, orthopedic aids, clinical and medical office equipment, dialysis systems and x-ray/radiation monitoring devices to endoscopy, ultrasound, surgical techniques, and dental materials.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Scientists achieve higher precision weak force measurement between protons, neutrons

Through a one-of-a-kind experiment at the Department of Energy’s Oak Ridge National Laboratory, nuclear physicists have precisely measured the weak interaction between protons and neutrons. The result quantifies the weak…

High-performance single-atom catalysts for high-temperature fuel cells

Individual Pt atoms participate in catalytic reaction to faciitate the electrode process by up to 10 times. Single-atom Pt catalysts are stable at 700 degrees Celsius and expected to stimulate…

New method allows precise gene control by light

A novel optical switch makes it possible to precisely control the lifespan of genetic “copies”. These are used by the cell as building instructions for the production of proteins. The…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close