New technology developed at Barrow Neurological Institute enhances MRI capabilities

Researchers at Barrow Neurological Institute in Phoenix have developed a new method that allows technicians to obtain clearer Magnetic Resonance Imaging (MRI) scans with less sensitivity to patient motion.

PROPELLER is an acronym for "Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction." This method acquires data in a unique way that allows one to track the motion of the patient during the MRI scan. The motion can then be removed.

"While PROPELLER technology continues to be refined, GE has already incorporated the novel method into new medical equipment," said Jim Pipe, senior staff scientist in the MRI Department at Barrow. "We believe that PROPELLER technology will help drive the future of MRI."

There are two major applications for this method. The first is motion-insensitive imaging. For the first time, high-quality MRI scans can be collected on many segments of the population who cannot hold still (children, Parkinson’s patients, etc.). This is leading the technology to a point where patient motion, which may be the biggest obstacle to good images, is no longer a factor.

The second application for PROPELLER is stroke imaging. The technology used to detect and characterize strokes, called "Diffusion Weighted Imaging (DWI)," is extremely sensitive to even minute motion in a patient. Prior to PROPELLER, DWI images suffered in quality because the methods used to reduce this motion sensitivity also reduced image quality. With PROPELLER DWI, small strokes are much easier to detect, grade and follow during treatment.

Media Contact

Jennifer Kennedy EurekAlert!

All latest news from the category: Medical Engineering

The development of medical equipment, products and technical procedures is characterized by high research and development costs in a variety of fields related to the study of human medicine.

innovations-report provides informative and stimulating reports and articles on topics ranging from imaging processes, cell and tissue techniques, optical techniques, implants, orthopedic aids, clinical and medical office equipment, dialysis systems and x-ray/radiation monitoring devices to endoscopy, ultrasound, surgical techniques, and dental materials.

Back to home

Comments (0)

Write a comment

Newest articles

“Nanostitches” enable lighter and tougher composite materials

In research that may lead to next-generation airplanes and spacecraft, MIT engineers used carbon nanotubes to prevent cracking in multilayered composites. To save on fuel and reduce aircraft emissions, engineers…

Trash to treasure

Researchers turn metal waste into catalyst for hydrogen. Scientists have found a way to transform metal waste into a highly efficient catalyst to make hydrogen from water, a discovery that…

Real-time detection of infectious disease viruses

… by searching for molecular fingerprinting. A research team consisting of Professor Kyoung-Duck Park and Taeyoung Moon and Huitae Joo, PhD candidates, from the Department of Physics at Pohang University…

Partners & Sponsors