Nanotechnology could fix Achilles' heel

But the Achilles' heel in the prosthetic repertoire is fixing tendons… such as that found in the ankle. Now, researchers from the universities of Manchester and Liverpool have turned to nanotechnology to create artificial tendons using a spinning technique with a biodegradable plastic.

Writing in Inderscience's International Journal of Nanotechnology and Biomaterials Lucy Bosworth and Sandra Downes of the Department of Biomaterials, at the University of Manchester, and colleague Peter Clegg of The University of Liverpool, explain how materials science could be used to create very thin fibres to help regenerate damaged tendons.

Tendon injuries are a common problem facing anyone who takes part in sports or many other activities. A variety of tendons in man may be affected by injury, including tendons in the shoulder, elbows, biceps, knee, foot, and the notorious Achilles, the researchers say, while from the veterinary perspective, tendon problems in horses leads to costly losses to the racing industry.

Even with urgent treatment, scar tissue quickly forms as a tendon heals often leading to chronic pain and recurrent problems. Current treatments are ineffective, explain Bosworth and colleagues, so there is an urgent clinical need to find ways to prevent inferior scar tissue forming as an injury heals.

She and her colleagues reasoned that biocompatible fibres of the plastic polycaprolactone would not only be biocompatible and so be accepted by the body, but would be degraded over time as the injury heals and so replaced by new, healthy tissue.

They used a technique known as electrospinning to produce long, thin fibres of this material just a few thousandths the thickness of a human hair. These polymer nanofibres have a structure resembling the natural fibres of tendons; however, in this form they are not similar enough to be useful as a scaffold for tissue regeneration.

The Manchester team working with Peter Clegg, in Liverpool's Department of Veterinary Clinical Sciences, have now experimented with different electrospinning conditions to fabricate polycaprolactone nanofibres that form in long bundles that could be grouped together to form a temporary scaffold mimicking the structure of tendon tissue. Implanted into an injured tendon this scaffold material would act as a support for the growth of new tissue and prevent the formation of inferior scar tissue.

Media Contact

Albert Ang alfa

All latest news from the category: Medical Engineering

The development of medical equipment, products and technical procedures is characterized by high research and development costs in a variety of fields related to the study of human medicine.

innovations-report provides informative and stimulating reports and articles on topics ranging from imaging processes, cell and tissue techniques, optical techniques, implants, orthopedic aids, clinical and medical office equipment, dialysis systems and x-ray/radiation monitoring devices to endoscopy, ultrasound, surgical techniques, and dental materials.

Back to home

Comments (0)

Write a comment

Newest articles

World’s smallest molecular machine

… reversible sliding motion in ammonium-linked ferrocene. Researchers stabilized ferrocene molecules on a flat substrate for the first time, creating an electronically controllable sliding molecular machine. Artificial molecular machines, nanoscale…

Towards the control of chemical reactions

Overcoming one of the challenges of quantum mechanics: A major result in quantum mechanics has been achieved: for the first time, the temporal evolution of a quantum system has been…

Planets form through domino effect

New radio astronomy observations of a planetary system in the process of forming show that once the first planets form close to the central star, these planets can help shepherd…