Spilling the secrets of quantum entanglement

A material’s spins, depicted as red spheres, are probed by scattered neutrons. Applying an entanglement witness causes the neutrons to form a kind of quantum gauge capable of distinguishing between classical and quantum spin fluctuations.
Image courtesy of Nathan Armistead, Oak Ridge National Laboratory

Quantum technique accelerates identification of entangled materials.

The Science

Quantum materials behave in surprising ways because of quantum physics. For example, they can be superconductors, which can allow electricity to flow with no resistance. These materials could lead to completely new technologies. In an advance for quantum materials, scientists tested the ability of techniques called entanglement witnesses to accurately identify pairs of entangled magnetic particles. Entanglement is when one of these particles, or “spins,” mirrors another’s properties and behavior regardless of the distance between them. This research evaluated three entanglement witnesses. Of the three, quantum Fisher information (QFI) performed the best, routinely locating entanglement in complex materials. QFI also differentiated between true quantum activity and non-quantum activity that can appear quantum due to random thermal motion. In addition, the experiments confirmed that entanglement increases as temperature decreases.

The Impact

This work is the most thorough examination of QFI’s capabilities to date. It is also the first to apply the technique to massive solid materials by examining many pairs of entangled spins simultaneously. With QFI, scientists can more quickly identify entangled quantum materials such as quantum spin liquids, quantum magnets, and superconductors. These materials are ideal for applications such as data storage and computing. Incorporating QFI calculations into future neutron scattering experiments could help research teams characterize even more complex quantum materials.


Proving the presence of entanglement in one-dimensional spin chains—linear lines of connected spins within quantum materials—has historically been a major challenge in quantum information science. The team observed QFI tackling this challenge by applying the witness to neutron scattering experiments at the Spallation Neutron Source, a Department of Energy user facility. Because of their neutral charge and nondestructive nature, the neutrons provided valuable insights into the properties of two different spin chains. To validate their results, the researchers also ran computational simulations and analyzed data from older experiments conducted at the ISIS Neutron Source and the Institut Laue-Langevin.



This work was funded by the Department of Energy Office of Science, DOE’s Scientific Discovery through Advanced Computing program, Oak Ridge National Laboratory’s Laboratory Directed Research and Development program, the Quantum Science Center, the Center for Nanophase Materials Sciences, and the European Research Council under the European Union Horizon 2020 Research and Innovation Programme.

Media Contact

Michael Church
DOE/US Department of Energy
Office: 2028416299

Original Source


Media Contact

Michael Church
DOE/US Department of Energy

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Inverters with constant full load capability

…enable an increase in the performance of electric drives. Overheating components significantly limit the performance of drivetrains in electric vehicles. Inverters in particular are subject to a high thermal load,…

Combination of heavy ion therapy and mRNA vaccine

Joining forces for cancer research: TRON and GSI/FAIR study combination of heavy ion therapy and mRNA vaccine. It could be a new, promising combination of two therapeutic approaches and a…

European XFEL elicits secrets from an important nanogel

An international team at the world’s largest X-ray laser European XFEL at Schenefeld near Hamburg has scrutinised the properties of an important nanogel that is often used in medicine to…

Partners & Sponsors