Nanoparticles Make Silicone Rubber Clearly Stronger

Silicone rubber and other rubber-like materials have a wide variety of uses, but in almost every case they must be reinforced with particles to make them stronger or less permeable to gases or liquids. University of Cincinnati (UC) chemistry professor James Mark and colleagues have devised a technique that strengthens silicone rubber with nanoscale particles, but leaves the material crystal clear.

Silicone rubber is often reinforced by tiny particles of silica (the primary component of sand and the mineral quartz). However, those silica particles can cloud the silicone rubber, which is a problem for protective masks, contact lenses and medical tubing that rely on silicone rubber’s transparency.

Mark, along with graduate student Guru Rajan, UC professor Dale Schaefer, UC associate professor Gregory Beaucage and Yeungnam University (Korea) professor Gil Sur reported on their new technique in the August 15 issue of the Journal of Polymer Science Part B: Polymer Physics.

The technique infuses silicone rubber with nanoparticles up to five times smaller than the silica particles formed by comparable methods while still providing the same level of reinforcement and maintaining the silicone rubber’s clarity.

Variations on the technique might also be used to enhance other properties of silicone rubber and similar materials, affecting such traits as impermeability to gases or liquids. This could lead to better masks or suits to protect against agents that might be used in terrorist attacks.

The team’s technique is an improvement over related methods that use a chemical reaction to create silica particles within the silicone polymers. By generating the required catalyst in place from a tin salt and by restricting the amount of water to only that absorbed from water vapor in the air, the silica particles remain smaller—only 30 nm to 50 nm across—and are evenly dispersed throughout the silicone rubber. At that size, smaller than the wavelength of ultraviolet and visible light, the silica nanoparticles are essentially invisible.

NSF Media Contact: David Hart, 703-292-7737, dhart@nsf.gov

NSF Science Experts: Andrew Lovinger, 703-292-4933, alovinge@nsf.gov
Triantafillos J. Mountziaris, 703-292-8371, tmountzi@nsf.gov

Principal Investigators: James Mark, 513-556-9292, james.mark@uc.edu
Gregory Beaucage, 513-556-3063, gregory.beaucage@uc.edu

Media Contact

Josh Chamot NSF

All news from this category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to the Homepage

Comments (0)

Write comment

Latest posts

Innovations through hair-thin optical fibres

Scientists at the University of Bonn have built hair-thin optical fibre filters in a very simple way. They are not only extremely compact and stable, but also colour-tunable. This means…

Artificial intelligence for sustainable agriculture

ZIM cooperation network on AI-based agricultural robotics launched The recently approved ZIM cooperation network “DeepFarmbots” met virtually for its official kick-off on November 25. The central goal of the network…

Teamwork in a molecule

Chemists at the University of Jena harness synergy effect of gallium Chemists at Friedrich Schiller University Jena have demonstrated the value of “teamwork” by successfully harnessing the interaction between two…

Partners & Sponsors

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close