NIST chemists define and refine properties of plastic microsystems

There may well be a plastic biochip in your future, thanks in part to the National Institute of Standards and Technology (NIST).

Microfluidics devices, also known as “lab-on-a-chip” systems, are miniaturized chemical and biochemical analyzers that one day may be used for quick, inexpensive tests in physicians’ offices. Most microfluidics devices today are made of glass materials. Cheaper, disposable devices could be made of plastics, but their properties are not yet well understood.

NIST is contributing to the development of these plastic microfluidics. One study looked at how fluids flowed in plastic microchannels by tracking fluorescent dye in the fluids. NIST researchers also developed an easy technique for accurately measuring fluid temperatures–an important parameter for chemical reactions.

A third project spawned a method for concentrating and separating an ionic (charged) substance in solution within microchannels. The technique concentrates the substance as much as 10,000-fold or more, making it easier to detect in ultrasmall quantities (nanoliters–a billionth of a liter–or less).

Finally, NIST staff designed a novel system to overcome the difficult problem of slow mixing in microfluidics devices. The mixer consists of a T-shaped microchannel imprinted in plastic that is modified with a laser to create a series of slanted wells. The wells speed the mixing of two streams entering the passage.

Media Contact

Michael E. Newman EurekAlert!

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors