2D molecular crystals modulating electronic properties of organic semiconductors

Schematics of the bottom gate, top contact OFETs based on 1D/2D composite single crystals and schematic diagram of I-V curves before and after doping. Credit: ©Science China Press

The first strategy is bulk doping. Bulk doping involves the solution phase blending or vapor phase co-deposition of the dopants with the host OSCs. However, bulk doping introduces structural defects and energetic disorders in the host material, which reduces the mobility of the organic semiconductors.

The second strategy is surface doping. Surface doping is achieved by the deposition of dopants on surfaces of the host OSCs. Compared with bulk doping, the dopants are not incorporated into the lattice of the host, and thus the induction of structural defects and energetic disorders by common bulk doping are eliminated.

As a result, surface doping is considered as a useful strategy for nondestructive doping of OSCs. Up to now, dopants of various structures have been applied in surface doping.

However, most of the dopants are polycrystalline thin films and their thicknesses are not well controlled, Therefore, the performance improvements of OSCs are restricted.

Two-dimensional molecular crystals (2DMCs) are periodically arranged monolayer or few-layered organic molecules held together by weak interactions (e.g., hydrogen bonds, π-π interactions, van der Waals forces) in a 2D plane. They are continuous ultrathin films with long-range order.

Moreover, the thickness of the 2DMCs can be tuned at monolayer level, enabling highly controllable doping of OSCs at mono-layer precision. As a result, 2DMCs are potentially favorable materials as dopants for surface doping.

Very recently, Dr. Rongjin Li and colleagues in Tianjin University reported a highly effective and highly controllable surface doping strategy based on 1D/2D composite single crystal to boost the mobility and to modulate the threshold voltage of OFETs.

Taking advantage of the molecular scale thickness of the 2DMC dopants, tight attachment to the surface of the host OSCs is ensured and efficient doping is achieved. More importantly, the molecular scale thickness of the 2DMC with controllable layers ensures precise doping of the host material at monolayer precision.

In their study, 1D organic single-crystalline microribbons of TIPS-pentacene were adopted as an example OSC. Compared with the pristine materials, the average mobility of OFETs based on 1D/2D composite single crystals increased from 1.31 cm2/V* s to 4.71 cm2/V* s, corresponding to an increase of 260%.

Meanwhile, a substantial reduction of the threshold voltage from -18.5 V to -1.8 V was achieved. The maximum mobility of 5.63 cm2/V* s was higher than the vast majority of reported mobilities for TIPS-pentacene so far as we know.

Moreover, high on/off ratios of up to 108 were retained. Surface doping by 2DMCs provides a highly efficient and highly controllable strategy to modulate the optoelectronic properties of OSCs for various applications.

###

See the article: Zhang Y, Yang S, Zhu X, Zhai F, Feng Y, Feng W, Zhang X, Li R, Hu W. Highly efficient modulation of the electronic properties of organic semiconductors by surface doping with 2D molecular crystals. Sci China Chem., 2020, DOI:10.1007/s11426-020-9765-8.

http://engine.scichina.com/doi/10.1007/s11426-020-9765-8

Media Contact

Rongjin Li EurekAlert!

Alle Nachrichten aus der Kategorie: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Scientists achieve higher precision weak force measurement between protons, neutrons

Through a one-of-a-kind experiment at the Department of Energy’s Oak Ridge National Laboratory, nuclear physicists have precisely measured the weak interaction between protons and neutrons. The result quantifies the weak…

High-performance single-atom catalysts for high-temperature fuel cells

Individual Pt atoms participate in catalytic reaction to faciitate the electrode process by up to 10 times. Single-atom Pt catalysts are stable at 700 degrees Celsius and expected to stimulate…

New method allows precise gene control by light

A novel optical switch makes it possible to precisely control the lifespan of genetic “copies”. These are used by the cell as building instructions for the production of proteins. The…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close