Researchers Identify Protein That Detects Damaged DNA

Physicians have long marveled at the body’s ability to heal itself. Over time, breaks, tears, burns and bruises can often disappear sans medical intervention. Less well-understood are the similarly extraordinary repairs that take place on the molecular level, in DNA. To that end, findings announced today in the Proceedings of the National Academy of Sciences, may prove insightful. According to the report, researchers have found that a protein known as ATR appears to sense damage to DNA and touch off a sequence of events leading to molecular mending.

Ultraviolet radiation, chemotherapy and other agents can cause lesions in cellular DNA that must be fixed before the cell divides and replicates the mutations, which can lead to cancer, among other problems. Previous work had implicated ATR in the repair of damaged DNA, but exactly which part of that cascade of events the protein is responsible for remained a mystery. The new research, conducted by Aziz Sancar and his colleagues at the University of North Carolina, suggests that ATR directly detects DNA lesions and sounds the alarm bell, summoning the other members of the repair crew to duty, so to speak. “To find out if ATR directly sensed damaged DNA, we put a molecular tag on the ATR protein and purified it,” Sancar explains. “We incubated the tagged protein with either bits of DNA that were normal or damaged by UV radiation. ATR bound more often to damaged DNA than to undamaged DNA.” Furthermore, he notes, ATR’s activity increased when it encountered problematic DNA.

The results imply that ATR functions as an initial sensor in what is known as the DNA damage checkpoint response. “This is a very important phenomenon in both normal and cancerous cells,” Sancar observes. “ATR appears to act as a switch that starts the repair process and also stops cells from proliferating while they are being repaired.” Although the new work “is not going to cure cancer by itself,” he remarks, “it is a significant step forward” in that it could point the way to new anticancer drugs.

Media Contact

Kate Wong Scientific American

Alle Nachrichten aus der Kategorie: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Researchers break magnetic memory speed record

Advance could lead to new generation of ultrafast computer chips that retain data even when there is no power. Spintronic devices are attractive alternatives to conventional computer chips, providing digital…

Tracing the source of illicit sand–can it be done?

Research presented at the 2020 GSA Annual Meeting. If you’ve visited the beach recently, you might think sand is ubiquitous. But in construction uses, the perfect sand and gravel is…

Location and extent of coral reefs mapped worldwide using advanced AI

Nearly 75% of the world’s coral reefs are under threat from global stressors such as climate change and local stressors such as overfishing and coastal development. Those working to understand…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close