Scientists Succeed in Growing ’Uncultivable’ Microorganisms

Of the estimated 10,000 to 100,000 microbial species that inhabit our planet, scientists can only coax a few thousand to grow in the laboratory. As a result, efforts to categorize the vast diversity of microbes are lagging far behind attempts to classify plants, animals and insects. Now a report published in the current issue of the journal Science suggests that some of these so-called uncultivable microorganisms might not be so out of reach after all.

Tammi Kaeberlein, Kim Lewis and Klava Epstein of Northeastern University succeeded in growing pure cultures of elusive beach-growing bacteria by recreating their shore environment in the lab. The scientists collected blocks of beach and separated the microorganisms that reside on the sandy surface into sealed chambers, which were then set atop the sediment blocks inside aquariums. Though chemicals and nutrients could enter the chambers, the bacteria remained trapped. The novel experimental set-up garnered a nearly 300 percent increase in the number of microorganisms that produced colonies as compared with results achieved in conventional petri dishes. Moreover, the team isolated two previously unknown microbes, dubbed MSC1 and MSC2, and is analyzing nine others.

MSC1 (see image) and MSC2 also provided clues as to why some microorganisms refuse to grow in a stark laboratory dish even when ample nutrients are provided. The researchers discovered that culturing MSC1 and MSC2 in the specially designed chambers was easy but the bacteria would only grow in a petri dish if both strains were present. Because bacteria can use chemicals known as pheromones to communicate, the authors conclude that “it seems possible that microorganisms require specific signals originating from their neighbors that indicate the presence of a familiar environment.”

Media Contact

Sarah Graham American Scientist

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Faster, more energy-efficient way to manufacture an industrially important chemical

Zirconium combined with silicon nitride enhances the conversion of propane — present in natural gas — needed to create in-demand plastic, polypropylene. Polypropylene is a common type of plastic found…

Energy planning in Ghana as a role model for the world

Improving the resilience of energy systems in the Global South. What criteria should we use to better plan for resilient energy systems? How do socio-economic, technical and climate change related…

Artificial blood vessels could improve heart bypass outcomes

Artificial blood vessels could improve heart bypass outcomes. 3D-printed blood vessels, which closely mimic the properties of human veins, could transform the treatment of cardiovascular diseases. Strong, flexible, gel-like tubes…

Partners & Sponsors