Novel insecticidal toxins from bacteria

Speaker Michelle Hares, of the University of Exeter, studies insect-killing nematode worms which have symbiotic bacteria living in their guts. When the worm encounters insect prey, it burrows into the insect’s body and regurgitates the bacteria. These bacteria, called Photorhabdus luminescens, then release toxins directly into the insect’s bloodstream, rapidly killing it. The insect’s flesh then provides food for the bacteria and in turn the bacteria are food for the nematode.

“Once inside an insect, caterpillar or larva, the bacteria release a mixture of toxins which kill the victim”, says Michelle Hares of the University of Exeter’s Cornwall Campus. “The toxins we identified are made up of three different proteins, and all three are needed to kill the insect”. The Cornwall based scientists also discovered that the same genes needed to make these protein toxins are found in the Yersinia pestis bacteria which caused the bubonic plague, and in Yersinia pseudotuberculosis which causes thousands of cases of gastroenteritis today.

When the toxic proteins from both these human pathogenic bacteria were fed to tobacco hornworm caterpillars they had no effect, but when the same proteins were put on living cells from humans both Yersinia bacteria strains killed the cells.

“Our initial interest in this group of toxins, was centered around the hunt for novel insecticides, but our work now suggests they may also play an important role in the evolution of human and mammalian disease”, says Michelle Hares. “Our findings suggest that insecticidal toxin complexes have been adapted by the Yersinia family of bacteria to attack mammalian cells. We are therefore currently investigating exactly how the toxin complexes elicit their response and how they are involved in the evolution of pathogenic disease in Yersinia”.

Media Contact

Lucy Goodchild EurekAlert!

More Information:

http://www.sgm.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Organic matter on Mars was formed from atmospheric formaldehyde

Although Mars is currently a cold, dry planet, geological evidence suggests that liquid water existed there around 3 to 4 billion years ago. Where there is water, there is usually…

Engineers 3D print sturdy glass bricks for building structures

The interlocking bricks, which can be repurposed many times over, can withstand similar pressures as their concrete counterparts. What if construction materials could be put together and taken apart as…

New organic thermoelectric device

… that can harvest energy at room temperature. Researchers have succeeded in developing a framework for organic thermoelectric power generation from ambient temperature and without a temperature gradient. Researchers have…

Partners & Sponsors