Novel catalyst system for CO2 conversion

With this electrolysis cell, the researchers showed that homogeneous catalysts can be used for CO2 conversion.
Credit: RUB, Marquard

Research groups around the world are developing technologies to convert carbon dioxide (CO2) into raw materials for industrial applications. Most experiments under industrially relevant conditions have been carried out with heterogeneous electrocatalysts, i.e. catalysts that are in a different chemical phase to the reacting substances. However, homogeneous catalysts, which are in the same phase as the reactants, are generally considered to be more efficient and selective. To date, there haven’t been any set-ups where homogeneous catalysts could be tested under industrial conditions. A team headed by Kevinjeorjios Pellumbi and Professor Ulf-Peter Apfel from Ruhr University Bochum and the Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT in Oberhausen has now closed this gap. The researchers outlined their findings in the journal Cell Press Physical Science”. The article was published in print on December 13, 2023.

“Our work aims to push the boundaries of technology in order to establish an efficient solution for CO2 conversion that will transform the climate-damaging gas into a useful resource,” says Ulf-Peter Apfel. His group collaborated with the team led by Professor Wolfgang Schöfberger from the Johannes Kepler University Linz and researchers from the Fritz Haber Institute in Berlin.

Efficiency and long-lasting stability

The team explored the conversion of CO2 using electrocatalysis. In the process, a voltage source supplies electrical energy, which is fed to the reaction system via electrodes and drives the chemical conversions at the electrodes. A catalyst facilitates the reaction; in homogeneous electrocatalysis, the catalyst is usually a dissolved metal complex. In a so-called gas diffusion electrode, the starting material CO2 flows past the electrode, where the catalysts convert it into carbon monoxide. The latter, in turn, is a common starting material in the chemical industry.

The researchers integrated the metal complex catalysts into the electrode surface without bonding them to it chemically. They showed that their system could efficiently convert CO2: It generated current densities of more than 300 milliamperes per square centimeter. Moreover, the system remained stable for over 100 hours without showing any signs of decay.

No need to anchor the catalyst

All this means that homogeneous catalysts can generally be used for electrolysis cells. “However, they do require a specific electrode composition,” stresses Ulf-Peter Apfel. More specifically, the electrodes must enable direct gas conversion without solvents so that the catalyst isn’t leached from the electrode surface. Contrary to what is often described in specialist literature, there’s no need for a carrier material that chemically couples the catalyst to the electrode surface.

“Our findings open up the possibility of testing and integrating high-performance and easily variable homogeneous electrocatalysts in application scenarios for electrochemical processes,” concludes Apfel.

Journal: Cell Reports Physical Science
Article Title: Pushing the Ag-Loading of CO2 Electrolyzers to the Minimum via Molecularly Tuned Environments

Media Contact

Julia Weiler
Ruhr-University Bochum
julia.weiler@rub.de
Office: +49-234-322-5228

Expert Contact

Ulf-Peter Apfel
Chair of Inorganic Chemistry I, Ruhr University Bochum, Germany
ulf.apfel@ruhr-uni-bochum.de
Office: +49 234 32 21831

Media Contact

Julia Weiler
Ruhr-University Bochum

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Targeting failure with new polymer technology to enhance sustainability

Sustainability is a complex problem with many different players and influenced by policies, society, and technical perspective. We are reminded every day in the media of the unnecessary amount of…

Solar-powered desalination system requires no extra batteries

Because it doesn’t need expensive energy storage for times without sunshine, the technology could provide communities with drinking water at low costs. MIT engineers have built a new desalination system that…

What we can learn from hungry yeast cells

EMBL Heidelberg and University of Virginia scientists have discovered a curious way in which cells adapt to starvation – a mechanism with potential cancer implications. What can stressed yeast teach…

Partners & Sponsors