Evaluating the shear viscosity of different water models

Water models enable the simulation of the behavior of water molecules in a volume and the calculation of important micro- and macroscopic properties from the observed interactions. This study evaluated the shear viscosities of the water models OPC and OPC3 at different temperatures and found that they outperform other conventional models.
Credit: Tadashi Ando from Tokyo University of Science

A researcher from Japan evaluates the shear viscosities of popular water models widely used in biomolecular research.

Water is one of the most abundant substances on Earth and partakes in countless biological, chemical, and ecological processes. Thus, understanding its behavior and properties is essential in a wide variety of scientific and applied fields. To do so, researchers have developed various water models to reproduce the behavior of bulk water in molecular simulations. While these simulations can provide valuable insights into the specific properties of water, selecting an appropriate model for the system under study is crucial. Today, two water models have become very popular among biomolecular researchers: the 4-point Optimal Point Charge (OPC) and 3-point OPC (OPC3) models. These models are known for their ability to reproduce several properties of water with high accuracy, including density, heat of vaporization, and dielectric constant. However, there is limited information on whether OPC and OPC3 water models can accurately predict the shear viscosity of water.

The viscosity of water greatly affects how water molecules interact with other substances and surfaces, dictating critical phenomena such as diffusion and absorption. This affects the texture and taste of foods and beverages, as well as how oils and liquids interact with food during cooking. More importantly, the viscosity of water needs to be considered when designing and manufacturing pharmaceutical products, as well as many types of lubricants and polymeric materials. In addition, it influences how water and water-based solutions flow through small tubes, such as those in our circulatory system and in microfluidic devices.

Recently, Associate Professor Tadashi Ando from Tokyo University of Science conducted a study to test the performance of the OPC and OPC3 models, by evaluating their shear viscosities and comparing the values to the experimental calculations. These findings were published in Volume 159, Issue 10 of The Journal of Chemical Physics on September 14, 2023.

First, Dr. Ando set up molecular dynamics simulations of up to 2,000 water molecules using popular water models, including OPC, OPC3, and variants of the Transferable Intermolecular Potential 3-point (TIP3P) and 4-point (TIP4P) models. Next, he used an approach known as the Green-Kubo formalism—a commonly used method from statistical mechanics to study viscosity and heat conduction in various materials— to calculate the viscosity of the models.

The calculated viscosities for both OPC and OPC3 water models were very close to each other for temperatures ranging from 273 K to 373 K. Notably, for temperatures above 310 K, the viscosity predicted by these models was very close to that predicted by previous experimental findings. However, this was not the case at lower temperatures. Dr. Ando explains, “Compared to other water models, the performance of the OPC and OPC3 models in terms of predicting the shear viscosity was lower than that of TIP4P and TIP3P variants, but only for temperatures below 293 K.” Notably, at 273 K and 293 K, the shear viscosities of the two models were around 10% and 20% lower, respectively, as compared to those derived experimentally.

In addition to viscosity, Dr. Ando also assessed the performance of the OPC and OPC3 models for predicting other important water properties, such as surface tension and self-diffusion. The performance of OPC and OPC3 for these properties was remarkably accurate. “Based on the results of this study, along with those from previous reports, we can conclude that the OPC and OPC3 are among the best nonpolarizable water models at present, accounting for the various static and dynamic properties of water,” highlights Dr. Ando.

Overall, this study provides a thorough understanding of the advantages and limitations of water models. With any luck, this will help scientists polish these models to make them even more useful across various technological fields!

Reference                    

DOI: https://doi.org/10.1063/5.0161476

 

About The Tokyo University of Science

Tokyo University of Science (TUS) is a well-known and respected university, and the largest science-specialized private research university in Japan, with four campuses in central Tokyo and its suburbs and in Hokkaido. Established in 1881, the university has continually contributed to Japan’s development in science through inculcating the love for science in researchers, technicians, and educators.

With a mission of “Creating science and technology for the harmonious development of nature, human beings, and society”, TUS has undertaken a wide range of research from basic to applied science. TUS has embraced a multidisciplinary approach to research and undertaken intensive study in some of today’s most vital fields. TUS is a meritocracy where the best in science is recognized and nurtured. It is the only private university in Japan that has produced a Nobel Prize winner and the only private university in Asia to produce Nobel Prize winners within the natural sciences field.

Website: https://www.tus.ac.jp/en/mediarelations/

About Associate Professor Tadashi Ando from Tokyo University of Science

Dr. Tadashi Ando is currently an Associate Professor of Advanced Engineering at the Department of Applied Electronics at the Tokyo University of Science (TUS), Japan. He received his Ph.D. from the TUS Graduate School in 2004. His chief areas of interest are simulations of chemical compounds, biophysics, and protein folding simulations. A well-respected researcher, Dr. Ando has over 42 publications to his credit.

Journal: The Journal of Chemical Physics
DOI: 10.1063/5.0161476
Method of Research: Computational simulation/modeling
Subject of Research: Not applicable
Article Title: Shear viscosity of OPC and OPC3 water models
Article Publication Date: 14-Sep-2023
COI Statement: The author has no conflicts to disclose.

Media Contact

Hiroshi Matsuda
Tokyo University of Science
mediaoffice@admin.tus.ac.jp

Media Contact

Hiroshi Matsuda
Tokyo University of Science

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Innovative deep-sea analysis protects the environment

… double-pulse LIBS technology. The seabed contains large quantities of valuable minerals and metals that are urgently needed for modern technologies such as electric cars and wind turbines. However, discovering…

Plants instead of petroleum

– making new bio-based material solutions tangible on a pilot scale. The INN PRESSME joint project, funded by the European Union with around 14 million euros, was launched three years…

Signatures of of heart attack

Improving the outcome of patients after a heart attack is one of the major challenges of cardiology. This includes a comprehensive understanding of the pathophysiology and early detection of those…

Partners & Sponsors