Enzyme controlling cell death paves way for treatment of brain damage in newborns

Birth asphyxia can cause irreparable brain damage and lifelong handicaps, including cerebral palsy, epilepsy and mental retardation. The brain damage evolves over a time period of hours to days after the injury. This opens up a therapeutic window where we are able to affect outcome. Birth asphyxia is normally treated by cooling the infant, which has been shown to reduce the risk of lasting problems.

Saves only one in nine
Unfortunately this therapy stops only one child in nine from suffering brain damage. Furthermore, premature babies cannot be treated in this way. In her doctoral thesis, Ylva Carlsson has therefore attempted to find a new treatment strategy that can be used not only in combination with cooling therapy but also to help children where cooling therapy is not an option.
Mapping the key enzyme
The focus is on an enzyme which controls elements of the apoptosis – cell death – associated with the brain damage.

“We’ve mapped the role this enzyme plays in the development of brain damage in newborns who suffer from birth asphyxia,” says Carlsson. “The results show that a reduction in the amount of this enzyme also reduces the extent of the brain damage. Added protection is given if cooling therapy is used too.”

Age affects brain damage
Based on a study of mice, Carlsson is also able to show in her thesis that the mechanisms behind brain damage vary according to the age of the brain: a treatment that can protect adults turned out to exacerbate the damage in newborns.
Tailor-made treatments
“This may mean that some drugs developed for brain damage in adults should probably not be given to newborn babies,” says Carlsson. “Tailor-made treatments targeting specific brain damage mechanisms and combination treatments for children may therefore be the way forward. But first we need to look more closely at how best to control these proteins without disrupting other key functions in the growing brain.”
For more information, please contact: Ylva Carlsson
Mobile: +46 (0)703 641 240
Email: ylva.carlsson@vgregion.se

Media Contact

Helena Aaberg idw

Further information:

http://www.gu.se

All news from this category: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to the Homepage

Comments (0)

Write comment

Latest posts

A little friction goes a long way toward stronger nanotube fibers

Rice model may lead to better materials for aerospace, automotive, medical applications. Carbon nanotube fibers are not nearly as strong as the nanotubes they contain, but Rice University researchers are…

Light-induced twisting of Weyl nodes switches on giant electron current

Scientists at the U.S. Department of Energy’s Ames Laboratory and collaborators at Brookhaven National Laboratory and the University of Alabama at Birmingham have discovered a new light-induced switch that twists…

Acidification impedes shell development of plankton off the US West Coast

Shelled pteropods, microscopic free-swimming sea snails, are widely regarded as indicators for ocean acidification because research has shown that their fragile shells are vulnerable to increasing ocean acidity. A new…

Partners & Sponsors

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close