Deceiving cancer to facilitate treatment

Mathematical model of tumor heterogeneity and phenotype switching: A detailed analysis.
(c) M.Raatz / MPI for Evolutionary Biology

The effect of the phenotypic plasticity of cancer cells and how to exploit it.

Cancer cells are notorious for rapidly changing their phenotype, driving within-host spread and evading treatment. Scientists in Plön used a mathematical model to understand the role of a signal used by cancer cells to control their phenotype. By manipulating these signals, cancer cells can be tricked into a less harmful phenotype that is more responsive to treatments.

Mathematical oncology is a growing interdisciplinary field of research that harnesses the power of cancer biology, clinical insights, and mathematics. By using computational techniques and mathematical equations to understand the dynamic nature of cancer, the field strives to quantify the ecology, evolution, and treatment of cancer. Mathematical oncology is pivotal in advancing the fight against the lethal disease by enhancing and personalizing the ability to diagnose and treat cancer.

Phenotypic plasticity of carcinomas:
The search for a weakness in the fight against cancer cells

Carcinomas, cancer of epithelial cells, are known to show phenotypic plasticity, the ability to change traits based on the surroundings, making them difficult to treat. Cancer cells manage their phenotype by hijacking the immune system and relying on signals from immune cells. In a recently published study, Saumil Shah, Arne Traulsen, and Michael Raatz from the Department of Theoretical Biology at Max Planck Institute for Evolutionary Biology in Plön turned this devastating feature of cancer cells into a weakness by showing how this plasticity can be exploited.

Signals secreted by immune cells change the internal state of the cancer cells, manifesting as distinct phenotypes. When this signal is manipulated, the internal state of the cancer cell changes. As a response, the cancer cell changes its phenotype, becomes less harmful, and more responsive to treatment. Together with collaborators from the Institute for Experimental Cancer Research in Kiel, Saumil Shah and colleagues developed mathematical equations that capture the cancer cell response to these signals. They provide an understanding that will ultimately help to personalize and optimize cancer treatment.

Contact for scientific information:

Saumil Shah (English)
Dr. Michael Raatz (German)
Department of Theoretical Biology
Max Planck Institute for Evolutionary Biology

Original publication:

https://www.nature.com/articles/s41540-023-00309-1

More information:

https://www.evolbio.mpg.de/3720009/news_publication_21003727_transferred?c=15503

Media Contact

Michael Hesse Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Evolutionsbiologie

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Detector for continuously monitoring toxic gases

The material could be made as a thin coating to analyze air quality in industrial or home settings over time. Most systems used to detect toxic gases in industrial or…

On the way for an active agent against hepatitis E

In order to infect an organ, viruses need the help of the host cells. “An effective approach is therefore to identify targets in the host that can be manipulated by…

A second chance for new antibiotic agent

Significant attempts 20 years ago… The study focused on the protein peptide deformylase (PDF). Involved in protein maturation processes in cells, PDF is essential for the survival of bacteria. However,…

Partners & Sponsors