Hyper-accurate clocks – the beating heart of Galileo

The operational Galileo satellites will carry two types of clocks – passive hydrogen masers and rubidium atomic frequency standards. Each satellite will be equipped with two hydrogen masers, one of which will be the primary reference for generating the navigation signals, with the other as a cold (non-operating) spare.

Every operational satellite will also carry two rubidium clocks, one of which will be a hot (permanently running) backup for the operational hydrogen maser, instantly taking over should the maser fail and allowing signal generation to continue uninterrupted. The second rubidium clock will act as a cold spare.

GIOVE-A, the Galileo in-orbit verification satellite that is currently in service, carries two rubidium clocks – one operational and one cold spare. GIOVE-B, which is projected to enter service later this year, will carry one hydrogen maser and two rubidium clocks, one hot and one cold spare. The GIOVE-A2 satellite, which will be ready for launch in the second half of 2008, will carry a similar timekeeping payload to GIOVE-A, but will transmit additional navigation signals.

The Galileo passive hydrogen masers will keep time with an accuracy of around one nanosecond (one one-thousand-millionth of a second) in 24 hours – equivalent to losing or gaining a second in 2.7 million years. The rubidium clocks are accurate to 10 nanoseconds per day. In comparison, an ordinary digital wristwatch has an accuracy of about one second per day.

Galileo’s passive hydrogen maser clocks will be around one thousand million times more accurate than a digital wristwatch.

The need for accuracy

Conceptually, Galileo users will determine their position by measuring how much time radio waves transmitted by satellites in the Galileo constellation take to reach them. Radio waves travel at about 300 million metres per second, so they cover a distance of around 0.3 metres in one nanosecond. In order to offer navigation accuracies of the order of a metre, Galileo time measurements must therefore be performed with a precision in the nanosecond range.

As a by-product of satellite navigation’s need for accurate timekeeping, Galileo will also be able to offer precision time services to be used, for example, in the time stamping of financial transactions.

Galileo is a joint initiative between ESA and the European Commission. When fully deployed in the early years of the next decade, it will be the first civilian positioning system to offer global coverage.

Media Contact

Dominique Detain alfa

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors