Move towards more effective code generation

Dr Bernd Fischer at the University's School of Electronics and Computer Science (ECS) has received funding from the Engineering and Physical Sciences Research Council (EPSRC) to develop systematic techniques and supporting tools that will allow application developers to customise automatically generated code efficiently and reliably without needing to modify either the code generator or the generated code.

According to Dr Fischer, who has spent much of his career at the National Aeronautics and Space Administration (NASA), which is one of the collaborators on this project, software developers generally rely on code generation as a key technology to translate high-level models into code. Although this speeds up development and increases productivity and reliability, the output code often differs from the user's exact requirements and thus needs customisation.

Over a three year period, Dr Fischer proposes to develop a domain-specific code generator with the capacity to support reliable code customisation.

'This research is about making changes to the output of code generators,' said Dr Fischer. 'It's about making the code generator more flexible without having to go into the inner guts of the machine. Users in safety-critical application domains such as automotive and avionics systems will particularly benefit from the assurance support we can provide for customisations.'

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors