New imager microchip helps devices bring hidden objects to light

The terahertz imager features a microchip (see inset) and a reflector that increases the imaging distance and quality and reduces power consumption. The microchip emits radiation beams in the terahertz range (430 GHz) of the electromagnetic spectrum from pixels no larger than a grain of sand. The beams travel through obstacles that optical light cannot penetrate and bounce off objects and back to the microchip, where the pixels pick up the signal to create images.
Credit: The University of Texas at Dallas

Researchers from The University of Texas at Dallas and Oklahoma State University have developed an innovative terahertz imager microchip that can enable devices to detect and create images through obstacles that include fog, smoke, dust and snow.

The team is working on a device for industrial applications that require imaging up to 20 meters away. The technology could also be adapted for use in cars to help drivers or autonomous vehicle systems navigate through hazardous conditions that reduce visibility. On an automotive display, for example, the technology could show pixelated outlines and shapes of objects, such as another vehicle or pedestrians.

“The technology allows you to see in vision-impaired environments. In industrial settings, for example, devices using the microchips could help with packaging inspections for manufacturing process control, monitoring moisture content or seeing through steam. If you are a firefighter, it could help you see through smoke and fire,” said Dr. Kenneth K. O, professor of electrical and computer engineering and the Texas Instruments Distinguished University Chair in the Erik Jonsson School of Engineering and Computer Science.

Yukun Zhu, a doctoral candidate in electrical engineering, announced the imaging technology on Feb. 21 at the virtual International Solid-State Circuits Conference, sponsored by the Institute of Electrical and Electronics Engineers (IEEE) and its Solid-State Circuits Society.

The advance is the result of more than 15 years of work by O and his team of students, researchers and collaborators. This latest effort is supported by through its TI Foundational Technology Research Program.

“TI has been part of the journey through much of the 15 years,” said O, who is director of the Texas Analog Center of Excellence (TxACE) at UT Dallas. “The company has been a key supporter of the research.”

The microchip emits radiation beams in the terahertz range (430 GHz) of the electromagnetic spectrum from pixels no larger than a grain of sand. The beams travel through fog, dust and other obstacles that optical light cannot penetrate and bounce off objects and back to the microchip, where the pixels pick up the signal to create images. Without the use of external lenses, the terahertz imager includes the microchip and a reflector that increases the imaging distance and quality and reduces power consumption.

The researchers designed the imager using complementary metal-oxide semiconductor (CMOS) technology. This type of integrated circuit technology is used to manufacture the bulk of consumer electronics devices, which makes the imager affordable. O’s group was one of the first to show that CMOS technology was viable, and since then they have worked to develop a variety of new applications.

“Another breakthrough result enabled through innovations that overcame fundamental active-gain limits of CMOS is that this imaging technology consumes more than 100 times less power than the phased arrays currently being investigated for the same imaging applications. This and the use of CMOS make consumer applications of this technology possible,” said O, a fellow of the IEEE.

TxACE is supported by the Semiconductor Research Corp., TI, the UT System and UT Dallas.

“UT Dallas and Oklahoma State continue to discover technological innovations that will help shape the future,” said Dr. Swaminathan Sankaran, design director and Distinguished Member Technical Staff at TI Kilby Labs. “What Dr. O and his research team were able to accomplish was truly remarkable with this terahertz monostatic reflection-mode imager work. Their research paves a path for improved raw angular resolution and low-power, cost system integration, and we are excited to see what applications and use cases this terahertz imaging technology will lead to.”

Method of Research: Experimental study
Subject of Research: Not applicable
Article Title: A 430GHz CMOS Concurrent Transceiver Pixel Array for High Angular Resolution Reflection-Mode Active Imaging
Article Publication Date: 21-Feb-2022

Media Contact

Kim Horner
University of Texas at Dallas
kim.horner@utdallas.edu
Office: 972-883-4463

Media Contact

Kim Horner
University of Texas at Dallas

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors