Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative image processing for service robots

17.03.2014

Fraunhofer IPA presents new technologies for 3D environment perception and object recognition

Warehouse robots capable of sorting chaotically delivered parts; domestic assistance robots able to distinguish between graspable objects and living areas; cleaning robots that detect and remove dirt: the systems developed at Fraunhofer IPA for three-dimensional object recognition and environment sensing allow robots to accomplish even complex tasks.


3D object recognition in variable light conditions or when partially hidden.

Image credit: Fraunhofer IPA


3D environment perception: The initial situation (left) is segmented into homogeneous areas (centre). Then the surface properties are determined (right) (e. g. green cylinder).

Image credit: Fraunhofer IPA

At Automatica 2014, Fraunhofer IPA will present innovative technologies for image processing and collision-free manipulation in a dynamic environment.

Accurate, fast, flexible and easy to operate for the user: these are the key criteria for real-world 3D image-processing solutions for robot systems. Fraunhofer IPA has developed a diverse and versatile software library for automatic object recognition and teach-in as well as for three-dimensional environment sensing.

At Automatica 2014, Fraunhofer IPA will demonstrate not only how a robot system can execute collision-free motions, including in a dynamic environment, but also how it can reliably recognize, classify and grasp objects.

Recognition and classification of textured and textureless objects

To reliably manipulate objects in a dynamic everyday environment, a robot system must be capable of recognizing and localizing the objects. The image processing searches selectively for feature points, which are assembled into a model and stored. This makes it possible for objects to be recognized also in variable light conditions or when partially hidden. And that’s not all the 3D object recognition system can do: the combination of geometrical shapes also allows it to determine the class or category of an object.

For example, the robot “knows” that a table is made up of a horizontal panel on top of four vertical cylinders, that a bottle is an oblong cylinder, a milk carton is a rectangular solid and a dish is a hemisphere. “Thanks to the combination of object recognition and classification, the robot can independently ‘learn’, or be intuitively taught to identify, specific objects or general object classes,” explains Jan Fischer, research assistant in the Robot and Assistance Systems department.

“Also in a variable environment, it is capable of reliably recognizing objects – in under a second.” The exhibit at Automatica 2014 will demonstrate the fast and reliable recognition of any object in an undefined environment.

Environment perception

To generate a 3D map, the robot senses its environment three-dimensionally using a combination of colour camera and depth camera, which produces a point cloud with accurately assigned distance values. The point clouds, which are recorded at different times, must first be registered in a common coordinate system. Next, the point data are segmented into geometric primitives, such as polygons.

This makes it possible for the relevant regions and objects to be reliably identified in real-time. In addition to collision-free navigation and manipulation, this also allows the option of remote control by a human operator, who can make sense of the communicated data more quickly. “We have many years of experience in this area and can offer a versatile technology capable of being tailored to suit different requirements and applications,” says Georg Arbeiter, project manager in the Robot and Assistance Systems department.

The exhibit at Automatica 2014 will demonstrate collision-free manipulation in a dynamic environment. Workpieces are moved alternately by two robot arms, the second arm in each case representing a dynamic obstacle. The methods developed by Fraunhofer IPA use camera data to generate an environment model that is used as an input for planning the motion of a robot arm. Both moving obstacles and graspable objects can be identified. This makes the method suitable for applications requiring fast and flexible reactions to changes in environment.

Applications

Learnable 3D object recognition and environment sensing can be used in a variety of areas and have been successfully implemented by Fraunhofer IPA in a wide range of different applications:
-in an industrial setting for autonomous driverless transport systems or for handling, warehousing and sorting operations;
-as a key technology for developing advanced assistance robots designed to provide a higher quality of life to people who are in need of assistance;
-to support growing automation in agriculture, e.g. to detect when fruit and vegetables are ready for picking or to enable milking robots to identify and localize cows’ udders;
-to enable cleaning robots to automatically detect dirt.

Contact
Dipl.-Ing. Georg Arbeiter, georg.arbeiter@ipa.fraunhofer.de, phone +49 711 970-1299
Richard Bormann M.Sc., richard.bormann@ipa.fraunhofer.de, phone +49 711 970-1062
Dipl.-Inf. Jan Fischer, jan.fischer@ipa.fraunhofer.de, phone +49 711 970-1191

More at Automatica – 6th International Trade Fair for Automation and Mechatronics
3 to 6 June 2014
New Trade Fair Centre Munich
Hall A4 | Stand 530
www.automatica-munich.com

Weitere Informationen:

http://www.ipa.fraunhofer.de/6D-Objekterkennung.520.0.html?&L=2http://www.ip...

Jörg Walz | Fraunhofer-Institut

Further reports about: Automatisierung IPA Produktionstechnik Trade classification identify processing sensing sorting

More articles from Trade Fair News:

nachricht LASER World of PHOTONICS China Shanghai 2019: When the laser drills, cuts and coats…
14.02.2019 | Fraunhofer-Institut für Lasertechnik ILT

nachricht More range for electric vehicles: Functionalized thermoplastic sandwich components within minutes
14.02.2019 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>