Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

InnoTrans 2016: Fraunhofer IPM presents novel contact wire inspection system

04.08.2016

Fraunhofer IPM is presenting its new Contact Wire Inspection System (CIS) at the InnoTrans 2016 trade fair. The CIS records the vertical and horizontal position of up to ten contact wires at the same time while also measuring their degree of wear – contactlessly and at speeds as high as 350 km/h.

The Fraunhofer Institute for Physical Measurement Techniques IPM is showcasing a number of its laser- and camera-based railway measurement systems, including numerous advancements and additional features, at InnoTrans 2016. Taking center stage is the new Contact Wire Inspection System (CIS), which is the only one of its kind in the world and boasts an impressive ability to capture a comprehensive range of data. In one single measurement process, it determines both the position and degree of wear of as many as ten contact wires simultaneously, working contactlessly at speeds of up to 350 km/h. Fraunhofer IPM is also presenting its Clearance Profile Scanner (CPS) for measuring clearance profiles as well as a small and lightweight laser-based measurement system for use on unmanned aerial vehicles (UAV). All the measuring devices combine high-resolution laser scanners with rapid image processing.


The Contact Wire Inspection System CIS combines a camera system for recording the degree of contact wire wear (illustrated) and a laser scanner for recording the contact wire position.

Rapid detection of contact wire position and wear

The Contact Wire Inspection System (CIS) is mounted on the roof of an inspection car. It comprises Fraunhofer’s Wire Wear Monitoring System (WWS), Contact Wire Recording System (CRS), and, optionally, its Laser Pole Detection System (LPS). The CIS uses a laser scanner (CRS) to determine the position of the wires and a camera (WWS) to identify the level of wire wear. A processing unit inside the inspection train provides the operators on site with processed position data that has already compensated for the train’s roll, which is recorded separately. Additional features, such as the automatic cleaning of the measurement window, ensure that the apparatus operates reliably and requires little maintenance.

The residual thickness of contact wires with a round cross section is calculated from the width of their sliding surface. The CIS’s camera-based measuring unit records the sliding surface and uses this information to derive data about the degree of wear on the wires. At a speed of 100 km/h, a reading is taken every 13 mm. Due to its high measurement frequency and rapid data processing, the system is suitable for use at speeds of up to 350 km/h. The CIS features its own lighting unit, meaning it can be operated reliably at any time, including at night, in tunnels or under bridges.

Fraunhofer IPM has also significantly upgraded the laser-based measuring unit used to record contact wire position. Higher scan frequencies have improved the system’s precision, meaning that the measurement results are virtually no longer influenced by the speed of the train. In addition, the measurement range has been extended to 10 meters, while the sampling rate, in other words, the number of measuring points per scan, has been increased sixfold.

You can visit Fraunhofer IPM at InnoTrans 2016 in Berlin from September 20–23. Find us at the joint stand of the Fraunhofer Traffic and Transportation Alliance in Hall 23, Stand 206.

Weitere Informationen:

http://www.ipm.fraunhofer.de/railway

Holger Kock | Fraunhofer-Gesellschaft

More articles from Trade Fair News:

nachricht Fraunhofer IPT presents platform for automated precision assembly of polarized optical fibers
02.07.2019 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Fingerprint spectroscopy within a millisecond
24.06.2019 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Genetic differences between strains of Epstein-Barr virus can alter its activity

18.07.2019 | Health and Medicine

Algae-killing viruses spur nutrient recycling in oceans

18.07.2019 | Life Sciences

Machine learning platform guides pancreatic cyst management in patients

18.07.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>