Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

InnoTrans 2016: Fraunhofer IPM presents novel contact wire inspection system

04.08.2016

Fraunhofer IPM is presenting its new Contact Wire Inspection System (CIS) at the InnoTrans 2016 trade fair. The CIS records the vertical and horizontal position of up to ten contact wires at the same time while also measuring their degree of wear – contactlessly and at speeds as high as 350 km/h.

The Fraunhofer Institute for Physical Measurement Techniques IPM is showcasing a number of its laser- and camera-based railway measurement systems, including numerous advancements and additional features, at InnoTrans 2016. Taking center stage is the new Contact Wire Inspection System (CIS), which is the only one of its kind in the world and boasts an impressive ability to capture a comprehensive range of data. In one single measurement process, it determines both the position and degree of wear of as many as ten contact wires simultaneously, working contactlessly at speeds of up to 350 km/h. Fraunhofer IPM is also presenting its Clearance Profile Scanner (CPS) for measuring clearance profiles as well as a small and lightweight laser-based measurement system for use on unmanned aerial vehicles (UAV). All the measuring devices combine high-resolution laser scanners with rapid image processing.


The Contact Wire Inspection System CIS combines a camera system for recording the degree of contact wire wear (illustrated) and a laser scanner for recording the contact wire position.

Rapid detection of contact wire position and wear

The Contact Wire Inspection System (CIS) is mounted on the roof of an inspection car. It comprises Fraunhofer’s Wire Wear Monitoring System (WWS), Contact Wire Recording System (CRS), and, optionally, its Laser Pole Detection System (LPS). The CIS uses a laser scanner (CRS) to determine the position of the wires and a camera (WWS) to identify the level of wire wear. A processing unit inside the inspection train provides the operators on site with processed position data that has already compensated for the train’s roll, which is recorded separately. Additional features, such as the automatic cleaning of the measurement window, ensure that the apparatus operates reliably and requires little maintenance.

The residual thickness of contact wires with a round cross section is calculated from the width of their sliding surface. The CIS’s camera-based measuring unit records the sliding surface and uses this information to derive data about the degree of wear on the wires. At a speed of 100 km/h, a reading is taken every 13 mm. Due to its high measurement frequency and rapid data processing, the system is suitable for use at speeds of up to 350 km/h. The CIS features its own lighting unit, meaning it can be operated reliably at any time, including at night, in tunnels or under bridges.

Fraunhofer IPM has also significantly upgraded the laser-based measuring unit used to record contact wire position. Higher scan frequencies have improved the system’s precision, meaning that the measurement results are virtually no longer influenced by the speed of the train. In addition, the measurement range has been extended to 10 meters, while the sampling rate, in other words, the number of measuring points per scan, has been increased sixfold.

You can visit Fraunhofer IPM at InnoTrans 2016 in Berlin from September 20–23. Find us at the joint stand of the Fraunhofer Traffic and Transportation Alliance in Hall 23, Stand 206.

Weitere Informationen:

http://www.ipm.fraunhofer.de/railway

Holger Kock | Fraunhofer-Gesellschaft

More articles from Trade Fair News:

nachricht AchemAsia 2019 will take place in Shanghai
15.06.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

nachricht Insects supply chitin as a raw material for the textile industry
05.06.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>