HPL Culture System – Two-phase cell culture system based upon human platelet lysate

In order to provide cells with a sufficient amount of growth factors, they are usually cultured in medium supplemented with fetal calve serum (FCS) or other blood sera. In the case of therapeutic applications, these xenogenic components bear the risk of immunologic reactions and infection with viruses or prions. Human platelet lysate (HPL) is considered to be an attractive alternative to FCS. It has been shown that HPL-supplemented cell culture medium yields a high expansion rate and is superior to FCS even during longterm cultivation.

Still, cells covered with HPL-medium do not experience optimal growth conditions, as they are usually cultured on a plastic surface which involves contact inhibition and enzymatic treatment during passaging. Invention :This invention relates to a cell culture system based upon human platelet lysate (HPL) and standard cell culture medium. The two-phase system consists of HPL-medium and HPL-gel. Both components only differ in the addition of a polymerization-inhibiting substance, e.g. heparin (compare Fig.1). In this way, growth factors are provided in a constant concentration throughout the culture system and three-dimensional cell growth is facilitated, thus minimizing contact inhibition. It has been shown that culturing mesenchymal stromal cells (MSC) on HPL-gel yields a higher proliferation rate (compare Fig. 3) and CFU-f outgrowth compared to a plastic surface and collagen-gel. Cell passaging can either be performed enzymatically or by mechanical gel fragmentation with a pipette (compare Fig. 2). Summing up, the novel HPL culture system provides excellent growth conditions for standard cell culture as well as for cell therapeutic applications.

Further Information: PDF

PROvendis GmbH
Phone: +49 (0)208/94105 10

Contact
Dipl.-Ing. Alfred Schillert

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

Microscopic basis of a new form of quantum magnetism

Not all magnets are the same. When we think of magnetism, we often think of magnets that stick to a refrigerator’s door. For these types of magnets, the electronic interactions…

An epigenome editing toolkit to dissect the mechanisms of gene regulation

A study from the Hackett group at EMBL Rome led to the development of a powerful epigenetic editing technology, which unlocks the ability to precisely program chromatin modifications. Understanding how…

NASA selects UF mission to better track the Earth’s water and ice

NASA has selected a team of University of Florida aerospace engineers to pursue a groundbreaking $12 million mission aimed at improving the way we track changes in Earth’s structures, such…

Partners & Sponsors