First Compact Method for All-Optical 3R- and Phase Generation

<strong>Background</strong><br>

Compact state of the art 3R-regeneration systems for an optical phase-coded data signal are not capable of enhancing the quality of phase information. Since DPSK systems offer 3 dB better performance, phase-coded systems and thus phase regeneration would be favourable in all-optical networks. <br><br> <strong>Technology</strong><br> This technology allows the entire, all-optical regeneration of DPSK and other phase-coded optical data signals under a conversion of the carrier wavelength. The compact design of the regeneration module opens the possibility to easily integrate it into an optical sub-system avoiding fiber technology. The method also offers the possibility of converting the phase-coded optical signal into an amplitude-coded optical signal. This can be operated independently.<br><br> <p><strong>Benefits</strong><br> <ul> <li>All optical phase regeneration</li> <li>Compact design possible</li> </ul> <p><strong>IP Rights</strong><br> German Patent DE 10 2005 037 828</p> <p><strong>Origin</strong><br> Technische Universität Berlin, Germany</p>

Further Information: PDF

ipal GmbH
Phone: +49 (0)30/2125-4820

Contact
Dr. Dirk Dantz

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

Microscopic basis of a new form of quantum magnetism

Not all magnets are the same. When we think of magnetism, we often think of magnets that stick to a refrigerator’s door. For these types of magnets, the electronic interactions…

An epigenome editing toolkit to dissect the mechanisms of gene regulation

A study from the Hackett group at EMBL Rome led to the development of a powerful epigenetic editing technology, which unlocks the ability to precisely program chromatin modifications. Understanding how…

NASA selects UF mission to better track the Earth’s water and ice

NASA has selected a team of University of Florida aerospace engineers to pursue a groundbreaking $12 million mission aimed at improving the way we track changes in Earth’s structures, such…

Partners & Sponsors