Archaeal Expression System (Sulfolobus shuttle vector)

Sulfolobus spp., a thermoacidophilic crenarchaeote, can be easily grown in

the laboratory and is interesting from a biotechnological point of view. Due to their growth conditions (75-80°C and pH 3-3.5), enzymes from this organism are thermostable and, if secreted, also acid-resistant and may have potential for industrial applications. Furthermore, Sulfolobus is developing into an important archaeal model organism that is increasingly being used in biochemical and molecular biology studies. So far, in vivo experiments in Sulfolobus were hampered by the poor reproducibility of the few described genetic systems. This technical hurdle could be overcome with the developed Sulfolobus- Escherichia coli shuttle vector. Our construct meets the requirements for a small, episomal, easy-to-handle multicopy vector. The different components are an E. coli replicon with a selectable marker for E. coli, a Sulfolobus replicon, and a selectable marker for Sulfolobus. The plasmid pRN1 was chosen as Sulfolobus replicon because of its relatively small size of 5.4 kb. Our shuttle vector was found to be stable in E. coli and to be suitable for cloning of additional DNA sequences. Furthermore, the suitability of the vector constructs for reporter gene experiments and for the expression of proteins in Sulfolobus was demonstrated.

Further Information: PDF

Bayerische Patentallianz GmbH
Phone: +49 89 5480177-0

Contact
Peer Biskup

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

Why getting in touch with our ‘gerbil brain’ could help machines listen better

Macquarie University researchers have debunked a 75-year-old theory about how humans determine where sounds are coming from, and it could unlock the secret to creating a next generation of more…

Attosecond core-level spectroscopy reveals real-time molecular dynamics

Chemical reactions are complex mechanisms. Many different dynamical processes are involved, affecting both the electrons and the nucleus of the present atoms. Very often the strongly coupled electron and nuclear…

Free-forming organelles help plants adapt to climate change

Scientists uncover how plants “see” shades of light, temperature. Plants’ ability to sense light and temperature, and their ability to adapt to climate change, hinges on free-forming structures in their…

Partners & Sponsors