Anode Material for Lithium-Ion Batteries – Carbon coated iron oxide and zinc ferrite nanoparticles

The presented technology offers methods for the synthesis and preparation of carbon coated metal oxide nanoparticles for application as anodic materials in lithium-ion batteries. Carbon coated Fe2O3 and ZnFe2O4 can be used in combination with carboxymethyl-cellulose (CMC) as binder obtaining highly mechanically stable electrodes.

Commercial Opportunities: The use of these carbon coated metal oxide nanoparticles enables the realization of environmentally friendly, cost-effective, and lightweight electrochemical energy storage devices for future large scale applications. Transition metal oxides provide higher specific capacities compared to graphite, which is the actual state-of–the-art in Li-ion batteries. Nevertheless, the main drawback of these conversion materials so far has been a reduced cycling stability and limited obtainable specific capacities at elevated applied current densities. However, these drawbacks could be overcome by utilizing the new carbon coated metal oxide nanoparticles. As a matter of fact, by using these materials it is possible to realize batteries offering a superior electrochemical performance at high current densities and advanced cycle life. Moreover, such enhanced electrodes are easily recyclable and 100% environmentally friendly.

Further Information: PDF

PROvendis GmbH
Phone: +49 (0)208/94105 10

Contact
Dipl.-Ing. Alfred Schillert

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

Why getting in touch with our ‘gerbil brain’ could help machines listen better

Macquarie University researchers have debunked a 75-year-old theory about how humans determine where sounds are coming from, and it could unlock the secret to creating a next generation of more…

Attosecond core-level spectroscopy reveals real-time molecular dynamics

Chemical reactions are complex mechanisms. Many different dynamical processes are involved, affecting both the electrons and the nucleus of the present atoms. Very often the strongly coupled electron and nuclear…

Free-forming organelles help plants adapt to climate change

Scientists uncover how plants “see” shades of light, temperature. Plants’ ability to sense light and temperature, and their ability to adapt to climate change, hinges on free-forming structures in their…

Partners & Sponsors