Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Offering flexible and adaptable mobile learning

06.07.2005


Imagine entering a museum and having information about the artwork at your fingertips or being able to collaborate remotely with fellow students in a university. Those services, and others, are being provided by a new mobile learning environment.



Created by MOBIlearn under the European Commission’s IST programme by 24 partners from Europe, Israel, the United States and Australia, the system breaks new ground in the development of mobile learning, or m-learning, applications that can be used in multiple contexts and scenarios.

“The possible applications of the MOBIlearn system are vast, it can be used anywhere where wireless information and educational content is needed to support the learning process of students, workers or citizens in general,” explains project manager Giancarlo Bo at GIUNTI Interactive Labs in Italy.


Though several m-learning products are on the market, the vast majority of these are “monolithic systems” designed to offer specific educational information in a specific context. “They are only able to provide a select subset of the functionalities that we implemented into MOBIlearn,” Bo notes.

Designed to be flexible and adaptable

MOBIlearn was therefore designed to be used in a variety of contexts, with the partners basing it on a framework to which new functionalities can be added rather than a top-down monolithic system. The result is an architecture that is more flexible and adaptable, leading to a more comprehensive m-learning environment incorporating ambient intelligence that tailors content to the profiles and needs of specific users.

“We didn’t want to simply provide information to users, we wanted the system to support the whole learning process depending on the scenario and the users’ individual needs,” the project manager explains. “In that way they gain a richer and more dynamic educational experience.”

To achieve that goal, MOBIlearn incorporates a selection of different technologies, most of them developed by the project partners, ranging from context and location awareness to content delivery, communication and personalisation.

Applied and well received

Three applications have been developed by the project consortium based on the MOBIlearn architecture. They offer ‘blended learning’ through merging m-learning with traditional education techniques for students and worker training; location-dependent learning to obtain educational resources outside of a classroom; and information, instructions and advice in the context of healthcare and first aid. The applications were tested in Switzerland, Italy and the UK last year.

“For blended learning MBA students at the University of Zurich were given mobile devices and told to perform specific tasks that would require collaboration between them. From different locations, they used the system to cooperate by sharing files, text and video messages about the project they had been given,” Giancarlo Bo explains. “The trials were very successful, the response of students was positive and they particularly liked the collaborative functionality.”

In the UK, the system was employed during a first aid training course with employees of the Open University, who were given different learning tasks that required them to obtain information and follow instructions and advice provided over mobile devices. “Once a user is accustomed to the system they could use it for more than just pre-emptive first aid training such as obtaining instructions in real time in the event of a medical emergency,” the project manager says.

The trial that perhaps best demonstrates the potential of MOBIlearn was conducted in Florence, Italy, with three groups of trial users: Italian secondary school students, foreign students and art experts.

“The users were given mobile phones, PDAs and tablet PCs and visited the Botticelli and Leonardo rooms of the Uffizi Gallery. Their positions within the rooms were tracked through location awareness and the system automatically sent them information about the paintings they were viewing. This information was tailored to the user’s profile and a more detailed history of the artwork was sent to art experts than to secondary school students, for example. Users could also choose to listen to the information or read it, they could also interact with the content, improving the cultural learning experience compared to reading from a traditional paper guidebook,” Bo explains.

Though the three scenarios validated the potential uses of MOBIlearn, they represent just a few of its possible applications.

“It could also be used in industry for maintenance workers to obtain information for specific tasks as and when they need it, and we have also looked at the possibilities for it to be employed by civil defence in crisis management situations such as during a natural disaster,” the project manager says.

Dr Bo, who notes that several consortium members are conducting further trials of the system amid plans to commercialise different components, expects m-learning to take off over the coming years as content providers create more educational content for mobile devices and mobile operators seek to offer new services to clients.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Science Education:

nachricht The Maturation Pattern of the Hippocampus Drives Human Memory Deve
23.07.2018 | Max-Planck-Institut für Bildungsforschung

nachricht Cebit 2018: Saarbrücken Start-up combines Tinkering and Programming for Elementary School Kids
05.06.2018 | Universität des Saarlandes

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>