Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Royal Academy of Engineering to lead National Engineering Programme and support Engineering Higher Education

29.06.2005


A new national initiative set to widen and increase participation in engineering higher education (HE) is to be launched by The Royal Academy of Engineering with funding from the Higher Education Funding Council for England (HEFCE) as part of HEFCE’s forward programme of support for strategically important and vulnerable subjects.



Working with some 85,000 school and university students in seven regions of England, the National Engineering Programme will, over a period of six and a half years, increase the number of new engineering undergraduates by more than 4,000, thereby addressing the UK’s long-term trend of a dropping percentage of HE students in engineering and technology since 1988.

The UK Government has declared an ambition that overall levels of R&D in the economy should reach 2.5% of GDP in ten years. If this is to be achieved in engineering and technology however, what is required is many more than the 17,000 engineering and technology graduates that the current HE system would provide the economy with over that period.


The National Engineering Programme will work in selected neighbourhoods that have low participation rates in HE in order to widen participation in it. It will target four groups currently under-represented: women, minority ethnic students, students from families where there is no experience of HE and adult learners, and thereby secure many more entrants into engineering HE.

Through curriculum enrichment activities in schools, HE institution activities and adult learning initiatives, the programme aims to permanently transform the secondary schools within the programme so that it becomes normal for 50% of students to enter HE, and to permanently alter the nature of HE engineering courses involved in the programme to make them culturally relevant and attractive to a diverse set of students.

The good news doesn’t end there.

The National Engineering Programme represents excellent value for money. This initial £2.85M from HEFCE will begin a process which, over a period of six and a half years, in seven UK regions, could mean that getting a young person from a disadvantaged background through an engineering degree would require only 25% more resource from HEFCE than that required for a more privileged student.

Professor Matthew Harrison of The Royal Academy of Engineering will lead the programme. Matthew says, “The Royal Academy of Engineering is delighted to be leading this exciting new programme: one that both strengthens engineering by bringing in a more diverse pool of students and helps neighbourhoods where participation rates in higher education are low.

The key to our programme is to seek out schools where we haven’t been before and to broker the connection between these schools, local universities offering attractive engineering courses, and local companies wanting to recruit the bright talented engineers of tomorrow.

In this way, we will set out pathways for students with an aptitude for maths and science to claim the benefits of a technical education: benefits to them, their families and the communities they live in.”

The National Engineering Programme will launch its pilot scheme, the London Engineering Project in September bringing together fifteen partner organisations. Professor John Turner, Executive Dean, Faculty of Engineering, Science and the Built Environment, London South Bank University will be the lead academic for the London pilot project.

John says, “At LSBU, we have developed recruitment strategies directed towards a wide range of cultural and socio-economic groups. As we already work with many primary and secondary schools, and FE colleges, throughout London, we are proud to be a founder member of the London Engineering Project, as it forms a key part of LSBU’s strategy for developing our Science, Engineering, Technology & Mathematics (STEM) courses.

The London Engineering Project will allow us to expand and improve our existing Student Ambassador scheme, run by the Widening Participation Unit, and will make it possible for us to work more closely with teachers and school managers. It will also enable us to develop and enlarge our programmes of summer schools, learning festivals and taster days. LSBU’s graduate employment is already noteworthy – on average our graduates achieve the eighth highest starting salary in the country, and our graduate employment rate last year was around 98% in engineering & science. We see the LEP as a vehicle that will help us substantially raise the numbers choosing to embark on a career in engineering & science.”

After undertaking impact assessment, the most effective elements of the London Engineering Project will be rolled out into six other regions – Tyne and Teeside, Humberside, Merseyside, Manchester, Leicester and Nottingham – to form phase 2 of the programme.

The third phase will commence once a critical mass of activity has emerged from phases 1 and 2. This final phase is a nationwide promotion campaign of the benefits of engineering HE and will be the first step towards self-sustainability.

Claire McLoughlin | alfa
Further information:
http://www.raeng.org.uk

More articles from Science Education:

nachricht The Maturation Pattern of the Hippocampus Drives Human Memory Deve
23.07.2018 | Max-Planck-Institut für Bildungsforschung

nachricht Cebit 2018: Saarbrücken Start-up combines Tinkering and Programming for Elementary School Kids
05.06.2018 | Universität des Saarlandes

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>