Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A gene activated in infant and young brains determines learning capacity in adulthood

13.11.2018

This week in the Proceedings of the National Academy of Sciences USA a research team from the University Medical Center Hamburg-Eppendorf (UKE) reports that there is a critical period in infant and young brains, when a specific gene needs to be activated to make complex learning in adulthood at all possible. The findings may have implications for child education and treatment of psychiatric disorders in which brain development was disturbed.

During early postnatal development, primary sensory regions of the brain undergo periods of heightened plasticity (critical period), which sculpt neural networks and lay the foundation for adult sensory perception.


“If such critical periods exists for complex behavior has long been debated” says Dietmar Kuhl, director of the Institute for Molecular and Cellular Cognition at the Center for Molecular Neurobiology (ZMNH) of the UKE.

“Our study shows that this is indeed the case. During a critical period in the development of the brain, the gene Arc/Arg3.1 is activated. It is responsible for establishing neuronal networks, which are required later for complex learning.”

In previous work, Dietmar Kuhl and his team identified Arc/Arg3.1 and demonstrated its vital role in storing long lasting memories in adults. Animals lacking this gene exhibit Alzheimer-like loss of memory although they are otherwise perfectly healthy.

In their new study, the Hamburg team discovered that Arc/Arg3.1 is also activated in the brains of infant and young mice. “These findings puzzled us, because mice of this age are not yet capable of forming long term memories”, explains Ora Ohana, who codirected this study with Dietmar Kuhl.

“We now could demonstrate that mice, which expressed the Arc/Arg3.1 gene during infancy and childhood, were capable of faster and more complex learning compared to mice, which lacked the gene during this critical period.”

According to the scientists, the new findings will pave the way to understand how regulation of Arc/Arg3.1 by genetic, environmental factors, as well as experience during childhood can determine adult cognitive capacity.

“This research will ultimately help to provide optimal environments for child-raising and better treatments for neuropsychiatric conditions in which brain development was disturbed”, says Xiaoyan Gao, one of the authors of the study.

The Medical Center Hamburg-Eppendorf (UKE)

Since its foundation in 1889, the Medical Center Hamburg-Eppendorf (UKE) has been one of the leading clinics in Europe. With about 11,000 employees, the UKE is one of the largest employer in the Free and Hanseatic City of Hamburg.

Together with its University Heart Center Hamburg and the Martini Clinic, the UKE has more than 1,730 beds and treats about 472,000 patients a year. The emphasis in UKE’s research are the neurosciences, cardio-vascular research, care research, oncology, as well as infections and inflammations. Other potential areas of the UKE are molecular imaging and skeletal biology research.

The UKE educates about 3,400 medical specialists and dentists.
Knowledge, Research, Healing through Shared Competence: The UKE | www.uke.de

Wissenschaftliche Ansprechpartner:

Prof. Dr. Dietmar Kuhl
Institut für Molekulare und Zelluläre Kognition
Universitätsklinikum Hamburg-Eppendorf (UKE)
Falkenried 94
20251 Hamburg
Telefon: 040 7410-56277
d.kuhl@uke.de

Originalpublikation:

Gao et al., Arc/Arg3.1 mediates a critical period for spatial learning and hippocampal networks, Pro-ceedings of the National Academy of Sciences USA (PNAS)

Saskia Lemm | idw - Informationsdienst Wissenschaft

More articles from Science Education:

nachricht How Humans and Machines Navigate Complex Situations
19.11.2018 | Max-Planck-Institut für Bildungsforschung

nachricht The Maturation Pattern of the Hippocampus Drives Human Memory Deve
23.07.2018 | Max-Planck-Institut für Bildungsforschung

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>