Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A gene activated in infant and young brains determines learning capacity in adulthood

13.11.2018

This week in the Proceedings of the National Academy of Sciences USA a research team from the University Medical Center Hamburg-Eppendorf (UKE) reports that there is a critical period in infant and young brains, when a specific gene needs to be activated to make complex learning in adulthood at all possible. The findings may have implications for child education and treatment of psychiatric disorders in which brain development was disturbed.

During early postnatal development, primary sensory regions of the brain undergo periods of heightened plasticity (critical period), which sculpt neural networks and lay the foundation for adult sensory perception.


“If such critical periods exists for complex behavior has long been debated” says Dietmar Kuhl, director of the Institute for Molecular and Cellular Cognition at the Center for Molecular Neurobiology (ZMNH) of the UKE.

“Our study shows that this is indeed the case. During a critical period in the development of the brain, the gene Arc/Arg3.1 is activated. It is responsible for establishing neuronal networks, which are required later for complex learning.”

In previous work, Dietmar Kuhl and his team identified Arc/Arg3.1 and demonstrated its vital role in storing long lasting memories in adults. Animals lacking this gene exhibit Alzheimer-like loss of memory although they are otherwise perfectly healthy.

In their new study, the Hamburg team discovered that Arc/Arg3.1 is also activated in the brains of infant and young mice. “These findings puzzled us, because mice of this age are not yet capable of forming long term memories”, explains Ora Ohana, who codirected this study with Dietmar Kuhl.

“We now could demonstrate that mice, which expressed the Arc/Arg3.1 gene during infancy and childhood, were capable of faster and more complex learning compared to mice, which lacked the gene during this critical period.”

According to the scientists, the new findings will pave the way to understand how regulation of Arc/Arg3.1 by genetic, environmental factors, as well as experience during childhood can determine adult cognitive capacity.

“This research will ultimately help to provide optimal environments for child-raising and better treatments for neuropsychiatric conditions in which brain development was disturbed”, says Xiaoyan Gao, one of the authors of the study.

The Medical Center Hamburg-Eppendorf (UKE)

Since its foundation in 1889, the Medical Center Hamburg-Eppendorf (UKE) has been one of the leading clinics in Europe. With about 11,000 employees, the UKE is one of the largest employer in the Free and Hanseatic City of Hamburg.

Together with its University Heart Center Hamburg and the Martini Clinic, the UKE has more than 1,730 beds and treats about 472,000 patients a year. The emphasis in UKE’s research are the neurosciences, cardio-vascular research, care research, oncology, as well as infections and inflammations. Other potential areas of the UKE are molecular imaging and skeletal biology research.

The UKE educates about 3,400 medical specialists and dentists.
Knowledge, Research, Healing through Shared Competence: The UKE | www.uke.de

Wissenschaftliche Ansprechpartner:

Prof. Dr. Dietmar Kuhl
Institut für Molekulare und Zelluläre Kognition
Universitätsklinikum Hamburg-Eppendorf (UKE)
Falkenried 94
20251 Hamburg
Telefon: 040 7410-56277
d.kuhl@uke.de

Originalpublikation:

Gao et al., Arc/Arg3.1 mediates a critical period for spatial learning and hippocampal networks, Pro-ceedings of the National Academy of Sciences USA (PNAS)

Saskia Lemm | idw - Informationsdienst Wissenschaft

More articles from Science Education:

nachricht How Humans and Machines Navigate Complex Situations
19.11.2018 | Max-Planck-Institut für Bildungsforschung

nachricht The Maturation Pattern of the Hippocampus Drives Human Memory Deve
23.07.2018 | Max-Planck-Institut für Bildungsforschung

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

All-in-one: New microbe degrades oil to gas

20.08.2019 | Life Sciences

Spinning lightwaves on a one-way street

20.08.2019 | Physics and Astronomy

Materials that can revolutionize how light is harnessed for solar energy

20.08.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>