Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart production

13.10.2008
Metal sheets are getting thinner and stronger all the time, and new production processes are called for. Researchers at the Fraunhofer Institute for Machine Tools and Forming Technology IWU in Chemnitz are relying on predictive process monitoring to eliminate faults during production as far as possible. They will be presenting the new technique at the joint Fraunhofer stand, G34, in Hall 11 at the Euroblech trade fair in Hanover from October 21 to 25, 2008.

Fuel is expensive, so cars need to become lighter and lighter. To ensure that this weight loss does not come at the expense of safety, the vehicles’ metal sheets are not only getting thinner but also harder – ultra-hard.

This means that the production process, too, has to be re-adapted. “Several process steps are needed to manufacture car body components,” explains Dipl.-Ing. Sören Scheffler of the Fraunhofer Institute for Machine Tools and Forming Technology IWU in Chemnitz. “If you look at a car, you can see that each of its sheet metal parts is extremely large. And the cost of this material is steadily increasing.

If the process used to draw, cut, perforate and calibrate the sheets is not set correctly, the resulting components will not meet the specified quality standards and have to be thrown away. In order to limit the number of rejects and keep costs down, today’s car manufacturers are seeking ways of making their processes more reliable.” The experts at the IWU have developed a special system for monitoring deep-drawing and forming processes, enabling production to be constantly and consistently supervised.

The system uses sensors to monitor drawing-in during production. The collected data are then transmitted online to a computer. “The art lies in recognizing from these data whether there are any process fluctuations that need balancing out. We do this by comparing the values recorded online with previously specified target data,” explains Scheffler. If the researchers discover any deviations, they can intervene even during the deep-drawing or forming process with the aid of elastic tools and tool-integrated piezo-elements, for example, and thus make the necessary readjustments. “As we are able to detect process fluctuations at an early stage, we can significantly reduce the reject rate. What’s more, we can recognize faulty parts and separate them out immediately,” says the expert, highlighting the system’s advantages. “This fully automatic process supervision perfectly complements the subsequent manual quality inspection.”

The new Fraunhofer technique is already in use as a prototype. It is suitable for all processes involving the handling of metal sheets, so it could also be used in the manufacture of consumer goods such as sinks, for instance. At the joint Fraunhofer stand, G34, in Hall 11 at the Euroblech trade fair, the researchers will be using a sample tool to demonstrate how production processes can be predictively monitored.

Sören Scheffler | alfa
Further information:
http://www.fraunhofer.de/EN/press/pi/2008/10/PressRelease09102008.jsp

Further reports about: EuroBlech IWU Smart production process monitoring production process

More articles from Process Engineering:

nachricht New technology for ultra-smooth polymer films
28.06.2018 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Diamond watch components
18.06.2018 | Schweizerischer Nationalfonds SNF

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>