Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue, industry partners creating ’intelligent’ grinding process

05.05.2004


Researchers at Purdue University are working with industry to develop an "intelligent" system that could save U.S. companies $1 billion annually in manufacturing costs by improving precision-grinding processes for parts production.


Chengying Xu (left). a doctoral student in mechanical engineering at Purdue University, and Yung Shin, professor of mechanical engineering, review information on data acquisition and monitoring for a "computer numerical control" grinding machine, pictured in background. Commonly referred to as CNC machines, the grinders cost up to $1 million and are widely used in industry to manufacture parts. Shin is leading research work that uses artificial intelligence software to improve the precision of such CNC grinding machines, which potentially could yield annual savings of $1 billion for U.S. companies. (Purdue News Service photo/David Umberger)



"Precision grinding is currently an art that relies heavily on the experience and knowledge of employees who have been in the business for years," said Yung Shin, a professor of mechanical engineering who is leading the Purdue portion of the research. "The problem is that many factories don’t have enough of these very experienced people, so a lot of grinding processes are run under suboptimal conditions.

"Our system strives to enable relatively inexperienced employees to operate grinding machinery with the same precision as these rare, highly experienced workers."


The "intelligent optimization and control grinding processes" use artificial-intelligence software, which mimics how people think, in order to learn and adapt to changing conditions.

Shin has been working on the method for 15 years. He will present an overview of his work on May 12, during the Automation & Assembly Summit, May 10-12, at the American Airlines Training Facility in Fort Worth, Texas. The conference was organized by the Society of Manufacturing Engineers.

"We estimate that if this method is fully implemented in the United States, we could save about 10 percent of the cost of current grinding practices, which is a really conservative estimate," Shin said. "That adds up to about $1 billion per year in the U.S."

TechSolve Inc., in Cincinnati, is leading the team of industrial partners in a three-year, $6 million project funded through the National Institute of Standards and Technology’s Advanced Technology Program.

"Precision grinding is becoming increasingly important for the automotive, aerospace, medical-device and electronics industries," said Anil Srivastava, manager of manufacturing technology at TechSolve. "Grinding is often the final machining process for creating parts that require smooth surfaces and extremely fine tolerances."

Other industrial members of the team are Delphi Energy & Chassis Systems in Dayton, Ohio; Applied Grinding Technologies in Wixom, Mich.; and Landis Gardner in Waynesboro, Pa.

If successful, the process would save Delphi millions of dollars annually by increasing productivity, saving energy, reducing the number of grinding wheels needed, reducing scrap and improving the overall quality of parts, said David Yen, manager of advanced manufacturing engineering at Delphi.

"Going from the lab to real-world applications won’t be easy and will require a lot of hard work and diligence," Yen said. "By the end of the three-year time span, we will identify several pilot applications, all in automotive areas, and validate the methodology, and then we will extend the technology to other grinding applications."

The intelligent system will use a wealth of data collected by various sensors, as a given part is being ground. Then the method will apply advanced software, such as neural networks and genetic algorithms, to operate specialized "computer numerical control" grinding machines that cost up to $1 million apiece.

The machines, commonly referred to as CNC machines, are widely used in industry and are increasingly being equipped with sensors that provide information about the grinding process in real time. The machines use grinding wheels containing ceramic or diamond particles to apply a fine-finish surface to precision parts, and sometimes they are used to create a part from scratch.

"Ceramic parts, for example, cannot be machined, so they are created entirely with grinding," Shin said.

The sensors collect information about such details as forces exerted on bearings, speed, vibration and temperatures during various parts of the process.

"A lot of machines are now coming out with these sensors," Shin said. "The question is, ’what do you do with all of that information?’

"We capture that information in the software to establish a database that will be used to set the machine to optimal operating conditions."

Shin has demonstrated that his method works in small-scale applications, but he said it will be a challenge for the team to apply it on a large-scale industrial basis.

"It is high risk because we are going from the lab to full-scale industrial systems," he said. "That sort of endeavor is always difficult because the magnitude of complexity in industry is much greater than in the lab."

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu
Sources: Yung C. Shin, (765) 494-9775, shin@ecn.purdue.edu
Anil Srivastava (513)948-2004, srivastava@techsolve.org
David Yen, (937)455-9259, david.w.yen@delphi.com
NIST Contact, Michael Baum, (301) 975-2763, michael.baum@nist.gov
Purdue News Service: (765) 494-2096; purduenews@purdue.edu



Emil Venere | Purdue News
Further information:
http://news.uns.purdue.edu/UNS/html4ever/2004/040504.Shin.grinding.html

More articles from Process Engineering:

nachricht A water treatment breakthrough, inspired by a sea creature
27.11.2018 | Yale University

nachricht Research project AutoAdd: Paving the way for additive manufacturing for the automotive industry
22.11.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>