Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue, industry partners creating ’intelligent’ grinding process

05.05.2004


Researchers at Purdue University are working with industry to develop an "intelligent" system that could save U.S. companies $1 billion annually in manufacturing costs by improving precision-grinding processes for parts production.


Chengying Xu (left). a doctoral student in mechanical engineering at Purdue University, and Yung Shin, professor of mechanical engineering, review information on data acquisition and monitoring for a "computer numerical control" grinding machine, pictured in background. Commonly referred to as CNC machines, the grinders cost up to $1 million and are widely used in industry to manufacture parts. Shin is leading research work that uses artificial intelligence software to improve the precision of such CNC grinding machines, which potentially could yield annual savings of $1 billion for U.S. companies. (Purdue News Service photo/David Umberger)



"Precision grinding is currently an art that relies heavily on the experience and knowledge of employees who have been in the business for years," said Yung Shin, a professor of mechanical engineering who is leading the Purdue portion of the research. "The problem is that many factories don’t have enough of these very experienced people, so a lot of grinding processes are run under suboptimal conditions.

"Our system strives to enable relatively inexperienced employees to operate grinding machinery with the same precision as these rare, highly experienced workers."


The "intelligent optimization and control grinding processes" use artificial-intelligence software, which mimics how people think, in order to learn and adapt to changing conditions.

Shin has been working on the method for 15 years. He will present an overview of his work on May 12, during the Automation & Assembly Summit, May 10-12, at the American Airlines Training Facility in Fort Worth, Texas. The conference was organized by the Society of Manufacturing Engineers.

"We estimate that if this method is fully implemented in the United States, we could save about 10 percent of the cost of current grinding practices, which is a really conservative estimate," Shin said. "That adds up to about $1 billion per year in the U.S."

TechSolve Inc., in Cincinnati, is leading the team of industrial partners in a three-year, $6 million project funded through the National Institute of Standards and Technology’s Advanced Technology Program.

"Precision grinding is becoming increasingly important for the automotive, aerospace, medical-device and electronics industries," said Anil Srivastava, manager of manufacturing technology at TechSolve. "Grinding is often the final machining process for creating parts that require smooth surfaces and extremely fine tolerances."

Other industrial members of the team are Delphi Energy & Chassis Systems in Dayton, Ohio; Applied Grinding Technologies in Wixom, Mich.; and Landis Gardner in Waynesboro, Pa.

If successful, the process would save Delphi millions of dollars annually by increasing productivity, saving energy, reducing the number of grinding wheels needed, reducing scrap and improving the overall quality of parts, said David Yen, manager of advanced manufacturing engineering at Delphi.

"Going from the lab to real-world applications won’t be easy and will require a lot of hard work and diligence," Yen said. "By the end of the three-year time span, we will identify several pilot applications, all in automotive areas, and validate the methodology, and then we will extend the technology to other grinding applications."

The intelligent system will use a wealth of data collected by various sensors, as a given part is being ground. Then the method will apply advanced software, such as neural networks and genetic algorithms, to operate specialized "computer numerical control" grinding machines that cost up to $1 million apiece.

The machines, commonly referred to as CNC machines, are widely used in industry and are increasingly being equipped with sensors that provide information about the grinding process in real time. The machines use grinding wheels containing ceramic or diamond particles to apply a fine-finish surface to precision parts, and sometimes they are used to create a part from scratch.

"Ceramic parts, for example, cannot be machined, so they are created entirely with grinding," Shin said.

The sensors collect information about such details as forces exerted on bearings, speed, vibration and temperatures during various parts of the process.

"A lot of machines are now coming out with these sensors," Shin said. "The question is, ’what do you do with all of that information?’

"We capture that information in the software to establish a database that will be used to set the machine to optimal operating conditions."

Shin has demonstrated that his method works in small-scale applications, but he said it will be a challenge for the team to apply it on a large-scale industrial basis.

"It is high risk because we are going from the lab to full-scale industrial systems," he said. "That sort of endeavor is always difficult because the magnitude of complexity in industry is much greater than in the lab."

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu
Sources: Yung C. Shin, (765) 494-9775, shin@ecn.purdue.edu
Anil Srivastava (513)948-2004, srivastava@techsolve.org
David Yen, (937)455-9259, david.w.yen@delphi.com
NIST Contact, Michael Baum, (301) 975-2763, michael.baum@nist.gov
Purdue News Service: (765) 494-2096; purduenews@purdue.edu



Emil Venere | Purdue News
Further information:
http://news.uns.purdue.edu/UNS/html4ever/2004/040504.Shin.grinding.html

More articles from Process Engineering:

nachricht Copper oxide photocathodes: laser experiment reveals location of efficiency loss
10.05.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie

nachricht NIST research sparks new insights on laser welding
02.05.2019 | National Institute of Standards and Technology (NIST)

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>