Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study: Carbon dioxide may find new use in producing medical implants

24.03.2004


Carbon dioxide, an environmentally friendly solvent for dyeing and dry cleaning, may become a valuable new tool for making medical implants, according to a study at Ohio State University.


David Tomasko



Engineers here used compressed carbon dioxide (CO2) to push chemicals into a plastic that is often used as a bone replacement. With further development, the technology could be used in a wide range of plastics that release medicines -- from antibiotics to anti-tumor agents -– into the body.

The high-pressure, high-temperature CO2 is neither gas nor liquid, but is known as a “supercritical fluid,” explained David Tomasko, associate professor of chemical engineering at Ohio State. Supercritical fluids are often used in industry because they penetrate materials like a gas but can dissolve some substances -- such as grease -- and other chemicals like a liquid.


“Though supercritical CO2 has long been developed as a means of extracting molecules, this work shows that it can be used in the opposite way,” said David Tomasko, associate professor of chemical engineering at Ohio State.

The study also revealed that engineers can control the pressure of the CO2 to alter the internal structure of the plastic and create voids that may enable the material to hold larger quantities of medicine than might normally be possible.

Tomasko and John Lannutti, associate professor of materials science and engineering, their graduate students Taryn Sproule and Hongbo Li, and undergraduate student J. Alex Lee, published their results in a recent issue of the Journal of Supercritical Fluids.

Supercritical CO2 is gaining popularity as an environmentally friendly dry-cleaning agent and textile-dyeing solvent, but it is the fluid’s ability to sterilize surfaces that could prove key for making medically active implants. Currently, implants are sterilized with heat, radiation, or chemicals that can make embedded medicines less effective, Tomasko explained.

The engineers’ early tests with a protein solution suggest that supercritical CO2 may leave medicines intact.

They applied a coating of the protein solution onto dime-sized plastic disks with a cotton swab, and placed the disks in a glass tank, which they then filled with supercritical CO2. The proteins contained a fluorescent biomarker, so the researchers were able to track how well the proteins penetrated the plastic by examining cross-sections of the material under a microscope in ultraviolet light.

The microscope showed that the proteins survived the embedding process, and formed a layer 30 micrometers, or millionths of a meter, beneath the surface of the plastic.

Although the plastic -- polymethylmethacrylate, or PMMA -- was undamaged by the procedure, the interior of the disks foamed up into a Swiss cheese-like texture, with voids opening inside. The faster the engineers turned off the high-pressure CO2, the foamier the material became. Lowering the pressure slowly had the opposite effect.

Tomasko envisions that such voids within an implant could come in handy for holding extra quantities of a drug for long-term therapy.

Today, medical implants are used for mechanical support where tissue or bone has been removed. The researchers’ vision is to “piggyback” drug delivery onto this mechanical function. The implant may be impregnated with drugs to prevent inflammation or infection following surgery. Or, in cases where a patient has had bone surgically removed as part of a treatment for cancer, doctors may also need to dispense anti-tumor agents from the implant for a longer period, Tomasko explained.

He’s been working with David Powell, clinical assistant professor of otolaryngology, to investigate the potential use of such implants for patients who’ve had facial surgery.

Since completing their initial study, the engineers have begun using a porous glass disk to dispense protein solution onto the PMMA, instead of a cotton swab. Still, they found that the proteins don’t penetrate the PMMA evenly, but form clumps instead -- an effect Tomasko suspects is due to the tightly packed polymer chains that make up the plastic.

“We think the CO2 lubricates the polymer chains so the protein molecules can slip in-between,” he said.

For the next step in this research, the engineers will be working with biodegradable plastics and determine whether the medicine remains effective after being embedded with the supercritical fluid.

Douglas Kniss, professor of obstetrics and gynecology at Ohio State, provided the protein solution, and Kathy Wolken, senior electron microscopist at the Campus Microscopy and Imaging Facility, assisted with the imaging of the PMMA samples.

This work was sponsored by the American Chemical Society’s Petroleum Research Fund and the National Science Foundation, along with internal support from Ohio State. The Wright Laboratory’s Materials Directorate at Wright-Patterson Air Force Base provided access to some of the equipment used in the study.


Contact: David Tomasko, (614) 292-4249; Tomasko.1@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | Ohio State University
Further information:
http://researchnews.osu.edu/archive/co2plast.htm

More articles from Process Engineering:

nachricht TUM Agenda 2030: Combining forces for additive manufacturing
09.10.2019 | Technische Universität München

nachricht Copper oxide photocathodes: laser experiment reveals location of efficiency loss
10.05.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>