Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell shocked

11.03.2004


SC researchers present new electric pulse technology



A new technology that uses electric fields to alter the "guts" of a cell may lead to improved methods of treating diseases such as cancer and leukemia, according to researchers in the USC Viterbi School of Engineering.

The technology, called electroperturbation, exposes cells to electric pulses just tens of nanoseconds (tens of billionths of a second) long, said electrical engineer Thomas Vernier, an investigator on a collaborative study to develop the technology.


Results of the work - supported primarily by the Air Force Office of Scientific Research with additional funding from the Army Research Office - were reported today at the national Nanotechnology 2004 conference in Boston, Mass.

The pulses are so brief and intense that they pass virtually undetected through the outer membrane of the cell without damaging it, Vernier said. But these fast-rising pulses pack such a powerful punch to the intracellular structures of the cell that they can dramatically change its biochemical balance, or trigger the start of cell death, a process known as apoptosis.

"In essence, we’re delivering thousands of volts to the cell in mere nanosecond intervals," said Vernier, an expert in semiconductors who is an engineering manager at the USC Viterbi School’s Information Sciences Institute.

"These high-frequency pulses are so short that they pass right through the cytoplasmic membrane without altering its structure," he said. "But they jolt the cell’s insides and, when delivered in strong enough doses, prompt the cell to self-destruct."

Still a fairly new application, nanosecond electric pulsing uses "Ultra-short Pulsed Systems Electroperturbation Technology," or UPSET. The technology, which has been in development at the school’s department of electrical engineering since 2001, is supported by grants secured by the project’s principal investigator, Martin Gundersen, a professor of electrical engineering.

Vernier and a research team from the department of electrical engineering, the department of cell and neurobiology at the Keck School of Medicine of USC and the Biophotonics Laboratory at Cedars-Sinai Medical Center have been testing the UPSET technology by exposing leukemia cells to high-frequency electric fields.

The technique has advantages over conventional T-cell treatments, Vernier said. For starters, it is noninvasive and can be delivered remotely, without attaching contacts or probes directly to the cells. The hope is that nanoelectric pulsing one day may replace procedures such as surgical removal of tumors or toxic treatments such as chemotherapy.

Nanosecond pulsing is an improvement over an older technique, called electroporation, Vernier said. Electroporation delivers longer duration electric pulses on the order of microseconds to milliseconds. The pulses punch holes in the cell’s external membrane, but they also can inadvertently fry the cell.

Ultra-short electric pulses deliver shorter and higher-frequency bursts of electricity, which do not puncture the cell’s outer membrane or raise its temperature enough to damage the cell. Instead, Vernier said, the swift spike in voltage simply rearranges the cell’s insides, such as its nucleus and mitochondria, without altering its outer shell.

Working in Gundersen’s laboratory on the third floor of USC’s Seaver Science Center, Vernier uses UPSET to study the biological mechanisms that trigger cell death.

Healthy cells automatically self-destruct when they become unhealthy or when their numbers grow too large. Mutated cells, such as cancer cells, lose the capacity to self-destruct and, instead, begin to proliferate rapidly. So Vernier and his colleagues zap cells with different pulse exposures to see how the cells react.

After exposure, the cells are treated with membrane-staining dyes and imaged to identify internal changes. Vernier’s team also is studying the effects of the technology on different types of cells.

"The more powerful nanosecond pulsing requires a very sophisticated solid-state micropulse generator, a coaxial cable and special spark-gap switch, all of which we are designing and assembling at USC," Vernier said.

Initial observations of the UPSET system have shown that the nanosecond pulses produce bursts of calcium inside cells within milliseconds after the pulse is delivered, Vernier said.

"This is important because calcium ions serve as regulatory messengers in a wide variety of processes across the physiological landscape of the cell," he said. "We are very interested in understanding how we might be able to use calcium ion releases to alter specific intracellular structures."

As the technology is refined, Vernier believes UPSET may become a more practical and convenient tool for treating a variety of diseases. The technology also is likely to lead to other biologically inspired nanomachines that one day may be capable of coaxing unhealthy cells into healing or killing themselves.

Usha Sutliff | EurekAlert!
Further information:
http://www.usc.edu/

More articles from Process Engineering:

nachricht Copper oxide photocathodes: laser experiment reveals location of efficiency loss
10.05.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie

nachricht NIST research sparks new insights on laser welding
02.05.2019 | National Institute of Standards and Technology (NIST)

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>