Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser technology advances microchip production*

21.05.2015

A new process for cutting silicon wafers could streamline the production of smaller and more powerful microchips for electronic devices.

Electronic chips are built on small pieces of silicon that are cut from silicon sheets, called wafers, in a process known as dicing. Currently, dicing is performed by mechanical sawing or laser cutting, but these approaches can cause problems.


Silicon wafer during production.

Copyright : 123rf.com

Sawing can cause thin wafers to break or layers of silicon to separate. The heat generated by laser cutting can leave micro cracks in the silicon and produces molten debris. Coolants or protective coatings are then required, adding to the production cost.

A team of researchers at the A*STAR (Agency for Science, Technology and Research) Singapore Institute of Manufacturing Technology has developed a new technique that uses laser-induced thermal cracking technology.

The silicon expands as a near-infrared laser heats it, then contracts as it cools, leading to stress that causes the silicon to break along the laser line.

The result is a crackfree silicon chip with a smooth surface finish. The process creates no debris, cuts 10 to 20 times faster than currently used techniques, and increases productivity because more silicon pieces can be cut from one wafer.

Together with the fact that the near-infrared laser is energy-efficient and consumes little power, these improvements over sawing and laser cutting result in a dramatic improvement in efficiency.

According to the research team, the new dicing technology will advance the production of microchips for electronic devices. It will enable the production of chips that are thinner and capable of supporting higher processing speeds, making for smaller and more powerful devices.

For further information contact:
Dr Wang Zhongke
Singapore Institute of Manufacturing Technology
Agency for Science, Technology and Research,
Singapore
E-mail: zkwang@simtech.a-star.edu.sg

*This article also appears in Asia Research News 2015 (p.56).


Associated links
Read Asia Research News 2015
Download a copy of Asia Research News 2015 for free

Lee Swee Heng | ResearchSEA
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Process Engineering:

nachricht New technology for ultra-smooth polymer films
28.06.2018 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Diamond watch components
18.06.2018 | Schweizerischer Nationalfonds SNF

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>