Laser technology advances microchip production*

Silicon wafer during production. Copyright : 123rf.com

Electronic chips are built on small pieces of silicon that are cut from silicon sheets, called wafers, in a process known as dicing. Currently, dicing is performed by mechanical sawing or laser cutting, but these approaches can cause problems.

Sawing can cause thin wafers to break or layers of silicon to separate. The heat generated by laser cutting can leave micro cracks in the silicon and produces molten debris. Coolants or protective coatings are then required, adding to the production cost.

A team of researchers at the A*STAR (Agency for Science, Technology and Research) Singapore Institute of Manufacturing Technology has developed a new technique that uses laser-induced thermal cracking technology.

The silicon expands as a near-infrared laser heats it, then contracts as it cools, leading to stress that causes the silicon to break along the laser line.

The result is a crackfree silicon chip with a smooth surface finish. The process creates no debris, cuts 10 to 20 times faster than currently used techniques, and increases productivity because more silicon pieces can be cut from one wafer.

Together with the fact that the near-infrared laser is energy-efficient and consumes little power, these improvements over sawing and laser cutting result in a dramatic improvement in efficiency.

According to the research team, the new dicing technology will advance the production of microchips for electronic devices. It will enable the production of chips that are thinner and capable of supporting higher processing speeds, making for smaller and more powerful devices.

For further information contact:
Dr Wang Zhongke
Singapore Institute of Manufacturing Technology
Agency for Science, Technology and Research,
Singapore
E-mail: zkwang@simtech.a-star.edu.sg

*This article also appears in Asia Research News 2015 (p.56).

Associated links
Read Asia Research News 2015
Download a copy of Asia Research News 2015 for free

Media Contact

Lee Swee Heng ResearchSEA

All latest news from the category: Process Engineering

This special field revolves around processes for modifying material properties (milling, cooling), composition (filtration, distillation) and type (oxidation, hydration).

Valuable information is available on a broad range of technologies including material separation, laser processes, measuring techniques and robot engineering in addition to testing methods and coating and materials analysis processes.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors