Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser technology advances microchip production*

21.05.2015

A new process for cutting silicon wafers could streamline the production of smaller and more powerful microchips for electronic devices.

Electronic chips are built on small pieces of silicon that are cut from silicon sheets, called wafers, in a process known as dicing. Currently, dicing is performed by mechanical sawing or laser cutting, but these approaches can cause problems.


Silicon wafer during production.

Copyright : 123rf.com

Sawing can cause thin wafers to break or layers of silicon to separate. The heat generated by laser cutting can leave micro cracks in the silicon and produces molten debris. Coolants or protective coatings are then required, adding to the production cost.

A team of researchers at the A*STAR (Agency for Science, Technology and Research) Singapore Institute of Manufacturing Technology has developed a new technique that uses laser-induced thermal cracking technology.

The silicon expands as a near-infrared laser heats it, then contracts as it cools, leading to stress that causes the silicon to break along the laser line.

The result is a crackfree silicon chip with a smooth surface finish. The process creates no debris, cuts 10 to 20 times faster than currently used techniques, and increases productivity because more silicon pieces can be cut from one wafer.

Together with the fact that the near-infrared laser is energy-efficient and consumes little power, these improvements over sawing and laser cutting result in a dramatic improvement in efficiency.

According to the research team, the new dicing technology will advance the production of microchips for electronic devices. It will enable the production of chips that are thinner and capable of supporting higher processing speeds, making for smaller and more powerful devices.

For further information contact:
Dr Wang Zhongke
Singapore Institute of Manufacturing Technology
Agency for Science, Technology and Research,
Singapore
E-mail: zkwang@simtech.a-star.edu.sg

*This article also appears in Asia Research News 2015 (p.56).


Associated links
Read Asia Research News 2015
Download a copy of Asia Research News 2015 for free

Lee Swee Heng | ResearchSEA
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Process Engineering:

nachricht Adhesive Process Developed for Shingle Cell Technology
09.01.2019 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Seawater turns into freshwater through solar energy: A new low-cost technology
08.01.2019 | Politecnico di Torino

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>