Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser Glass Soldering: Resource–efficient Packaging of Temperature-sensitive Large Component Groups

19.03.2013
To package temperature-sensitive glass/glass and glass/ceramics component groups, especially those with large substrate surfaces to be sealed, the laser-based joining process using glass solder is becoming more and more significant.

Unlike other processes, the laser beam is able to apply energy to a limited space in order to melt the glass solder precisely, thus generating a bond with long-term, stable hermeticity. The Fraunhofer Institute for Laser Technology ILT is developing the appropriate irradiation strategies and processing heads to achieve this.


Soldered Glass/Glass, Glass/MAM, Glass/Silicon, Glass/LTCC, Glass/ITO components.
Picture Source: Fraunhofer ILT, Aachen


Laser soldered Glass/Silicon sensor package.
Picture Source: Fraunhofer ILT, Aachen

Sensitive component groups such as optical sensors in medical technology, OLED components or dye solar cells require reliable encapsulation so that neither water nor oxygen can reach the interior of the component, thereby possibly impairing its functionality. Conventionally, such components are joined with anodic or glass-frit bonding or they are simply glued together. These bonds, however, are not stable enough over the long term. In addition, the entire component group is heated when it is bonded, which is why the process is not suitable for bonding temperature-sensitive components.

Scientists at the Fraunhofer ILT have developed a process that enables them to reduce the total heating of the component to be encapsulated to a minimum and, thus, prevent thermally induced stress in the process zone. By using laser-based joining with glass solder, the experts in Aachen can hermetically join temperature-sensitive glass/glass as well as glass/ceramics components groups which exhibit long-term stability. They have developed the process to such an extent that large components can also be encapsulated.

Laser-based Joining with Glass Solder

During laser-based glass soldering, the laser beam is guided precisely over the workpiece and applies the energy solely into the glass solder itself to melt it. The substrates to be joined are heated only via heat conduction to wet them; this way, the overall heating of the component group can be reduced to a minimum. An appropriate radiation approach for this is quasi-simultaneous laser soldering: a highly dynamic 2D scanner system guides the laser beam over the solder contour many times at a high speed and evenly heats the entire glass solder contour up to processing temperature by means of a laser power-time profile. After both joining pairs have been bonded, the temperature in the processing zone is lowered according to the profile without creating stress.

The quasi-simultaneous laser soldering is technically restricted by the maximum processing field size of the focusing optics as well as limited, from an economic point of view, by the laser power required, PL>1kW, when substrate sizes of 100 x 100 mm² are joined. Current processing approaches unify the resource-efficient energy input of this quasi-simultaneous process guidance with the size and geometry freedom of continuous processing optics.

New Geometrical Freedom for Temperature-sensitive Component Groups

The so-called contour soldering with energy input adapted laterally to feed movement enables, for the first time, large substrates to be joined at significantly lower laser power. For contour soldering, continuous beam sources are adequately dimensioned at PL

Viewing the Entire Production Chain

The team at the Fraunhofer ILT will design the entire production chain for its partners. From initial steps to prepare the process, such as the selection of an appropriate glass solder, via the application of the glass solder by means of screen printing all the way to the pre-vitrification of the pairs to be joined in a convection oven. Especially for laser-based glass soldering, the researchers have developed processing heads as well as positioning and clamping technologies to guarantee homogenous and reproducible packaging in either ambient or inert protective gas atmospheres.

Fraunhofer ILT at the Hannover Messe

In Hall 17 at the IVAM joint stand C50.13 at the Hannover Messe from April 8 to 12, 2013, our experts will be exhibiting component groups that were joined using laser-based glass soldering: for example, sensor housings with bonds of glass/silicon and glass/ceramics as well as glass/glass bonds with ITO layers.

Contacts

Elmar Gehlen, Dipl.-Ing.
Group Micro Joining
Telephone +49 241 8906-640
elmar.gehlen@ilt.fraunhofer.de
Heidrun Kind, Dipl.-Ing.
Group Micro Joining
Telephone +49 241 8906-490
heidrun.kind@ilt.fraunhofer.de
Dr. Alexander Olowinsky
Leader Group Micro Joining
Telephone +49 241 8906-490
alexander.olowinsky@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Axel Bauer | Fraunhofer-Institut
Further information:
http://www.ilt.fraunhofer.de

More articles from Process Engineering:

nachricht Diamond watch components
18.06.2018 | Schweizerischer Nationalfonds SNF

nachricht Quick and safe laser joining of steel-aluminum mixed connections
05.06.2018 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>