Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Watching a tiny galaxy grow

09.02.2012
For the first time, astronomers have caught a so-called dwarf galaxy in the process of swallowing another, even smaller galaxy.
Whether such mergers are important in the formation of the tiniest galaxies has been the subject of debate among theoreticians. Now, thanks to research by two independent groups including MPIA researchers David Martínez-Delgado and Michelle Collins, there is empirical evidence that such mergers occur. The analyses draw on deep images from modestly sized telescopes, in an example for successful collaboration between amateur and professional astronomers.

In the widely accepted hierarchical model of galaxy evolution, much of galactic growth involves acts of cannibalism and large-scale mergers: pre-existing, smaller galaxies successively coalesce into larger pieces until large galaxies, the size of the Milky Way or even bigger, form. But before galaxies and their stars can merge, stars have to form in the first place.

This is thought to happen by gas gathering to form denser regions under the influence of its own gravity; once a critical density is reached, stars are born. Conceivably, the smallest galaxies, so-called dwarf galaxies, might form in this way directly, and might grow bigger as they incorporate new gas from their surroundings, processing the new material into stars. In this way, there would be growth without the need for mergers. And indeed, until now, no such mergers had been observed.

Now, two independent groups of researchers, one led by David Martínez-Delgado of the Max Planck Institute for Astronomy (MPIA), the other by Michael Rich of UCLA, have identified the first confirmed example for a galaxy merger between very small galaxies. They found convincing evidence that a small companion of the dwarf galaxy NGC 4449 in the constellation Canis Venatici, first identified in 2007, is indeed another, smaller dwarf galaxy in the process of being disrupted by its larger neighbour – prior to being swallowed up.

Martínez-Delgado says: "A number of models predict that dwarfs should eat dwarfs. But this is the first clear example of such a feast that has been actually observed: We've found a key piece of the puzzle of galaxy evolution. Also, the fact that NGC 4449 is quite close to us shows that processes like this are still happening. They need to be taken into account if we want to describe our cosmic neighbourhood."

MPIA's Michelle Collins, who worked with Michael Rich on analyzing the dwarf galaxy's shape, adds: "Knowing what a half-digested dwarf galaxy looks like should help us find additional examples of dwarfs eating dwarfs. Finding a fair number of examples should put our models of the first stages of galactic growth on a firm footing – or show what we're missing."

Mass estimates for the distorted dwarf suggest that it contains significant amounts of Dark Matter, which does not emit light and only interacts with ordinary, atomic matter via gravity. If so, then this pairing could be a rare glimpse of a "stealth merger" – a galaxy's merger with a low-brightness object that is difficult to observe directly, yet, due to its high mass, can have a major influence on the receiving galaxy's shape, size and dynamics.

Both groups' examinations of the smaller dwarf galaxy's basic properties was performed with modest-scale instruments in cooperation with amateur astronomers: Rich et al. used the Saturn Lodge 0.7m telescope on the grounds of the Polaris Observatory Association for observations May-June 2011, while Martínez-Delgado et al. used Jay GaBany's 0.5 m telescope at Black Bird Observatory for observations between April 2010 and January 2011. Martínez-Delgado et al. followed up with detailed observations using the SUBARU telescope on Hawai'i in January 2011, obtaining images in which the smaller galaxy's haze is resolved into separate stars.

The paper by Rich et al. will appear in the February 9, 2012 issue of the journal Nature. The paper by Martínez-Delgado et al. is in press at the Astrophysical Journal Letters.

Contact

David Martínez-Delgado (Science contact)
Max Planck Institute for Astronomy
Phone: (+49|0) 6221 – 528 455
Email: delgado@mpia.de

Michelle Collins (Science contact)
Max Planck Institute for Astronomy
Phone: (+49|0) 6221 – 528 360
Email: collins@mpia.de

Markus Pössel (Public relations)
Max Planck Institute for Astronomy
Phone: (+49|0) 6221 – 528 261
Email: pr@mpia.de

Dr. Markus Pössel | Max-Planck-Institut
Further information:
http://www.mpia.de

More articles from Physics and Astronomy:

nachricht From China to the South Pole: Joining forces to solve the neutrino mass puzzle
25.02.2020 | Johannes Gutenberg-Universität Mainz

nachricht Beyond the brim, Sombrero Galaxy's halo suggests turbulent past
21.02.2020 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Turbomachine expander offers efficient, safe strategy for heating, cooling

25.02.2020 | Power and Electrical Engineering

The seismicity of Mars

25.02.2020 | Earth Sciences

Cancer cachexia: Extracellular ligand helps to prevent muscle loss

25.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>