Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For Unzipping DNA Mysteries – Literally – Physicists Discover How a Vital Enzyme Works

20.09.2011
With an eye toward understanding DNA replication, Cornell researchers have learned how a helicase enzyme works to actually unzip the two strands of DNA. (Nature, online Sept. 18, 2011.)
At the heart of many metabolic processes, including DNA replication, are enzymes called helicases. Acting like motors, these proteins travel along one side of double-stranded DNA, prompting the strands to “zip” apart.

What had been a mystery was the exact mechanics of this vital biological process – how individual helicase subunits coordinate and physically cause the unzipping mechanism.

Cornell researchers led by Michelle Wang, professor of physics and an investigator of the Howard Hughes Medical Institute (HHMI), have observed these processes by manipulating single DNA molecules to watch what happens when helicases encounter them, and how different nucleotides that fuel the reactions affect the process. For their experiments they used an E. coli T7 phage helicase, a type with six distinct subunits, which is a good representation of how many helicases work.

“This is a great demonstration of the power of single-molecule studies,” said Wang, whose lab specializes in a technique called optical trapping. To record data from single molecules, the scientists use a focused beam of light to “trap” microspheres attached to the molecules.

Prior to this work, researchers from other labs had found that the nucleotide dTTP (deoxythymidine triphosphate) was a “preferred” fuel for the helicase, and that the helicase apparently wouldn’t unzip DNA if ATP (adenosine triphosphate) was provided as fuel. Wang and her colleagues found this puzzling, because ATP is known to be the primary fuel molecule in living organisms.

In their latest work, they discovered that, in fact, ATP does cause unwinding, but only in the single-molecule study could they confirm this. In normal biochemical studies, ATP doesn’t seem to work, because it causes helicase to “slip” backward on the DNA, then move forward, then slip again.

In bulk studies, rather than single-molecule kinetic observations, the ATP doesn’t produce a signal from unwound DNA because the slippage masks the signal.

They then surmised that different mixtures of nucleotides might allow them to investigate helicase subunit coordination. They found that very small amounts of dTTP mixed with large amounts of ATP were enough to decrease the “slippage” events they saw with the ATP alone.

Further inspection revealed that while two subunits of the T7 helicase are binding and releasing nucleotides, the other four can remain bound to nucleotides to anchor the DNA and prevent it from slipping. It only takes one subunit bound to dTTP to decrease slippage almost entirely – a little goes a long way.

Such studies can help scientists gain a deeper understanding of helicase mechanics and, in the case of medicine, what happens when helicases go awry or don’t bind correctly.

Smita Patel, a biochemistry professor at the Robert Wood Johnson Medical School, at the University of Medicine and Dentistry of New Jersey, and paper collaborator, says helicase defects are associated with cancer predisposition, premature aging and many other genetics-related conditions.

“This study provides fundamental new knowledge about a cellular process that is essential to all forms of life,” said Catherine Lewis, who oversees single-molecule biophysics grants at the National Institute of General Medical Sciences of the National Institutes of Health. “By using single-molecule methods to study how helicases work, Dr. Wang has resolved several longstanding questions about how the enzyme is coordinated, and possibly regulated, during replication.”

Along with contributions from researchers at other institutions, the paper’s two lead authors are Bo Sun, an HHMI and Cornell postdoctoral associate in physics, and Daniel S. Johnson, a former graduate student.

The Nature paper, “ATP-induced helicase slippage reveals highly coordinated subunits,” was funded by the National Institutes of Health, the National Science Foundation and the Cornell Molecular Biophysics Training Grant.

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>