Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNH researcher discovers a black hole feeding frenzy that breaks records

07.02.2017

A giant black hole ripped apart a nearby star and then continued to feed off its remains for close to a decade, according to research led by the University of New Hampshire. This black hole meal is more than 10 times longer than any other previous episode of a star's death.

"We have witnessed a star's spectacular and prolonged demise," said Dacheng Lin, a research scientist at UNH's Space Science Center and the study's lead author. "Dozens of these so-called tidal disruption events have been detected since the 1990s, but none that remained bright for nearly as long as this one."


Artist illustration depicting the record breaking "tidal disruption event" (TDE). The red shows hotter material that falls toward the black hole and generates a distinct X-ray flare. The blue shows a wind blowing from the infalling material.

Credit: CXC/M. Weiss; X-ray: NASA/CXC/UNH/D. Lin et al, Optical: CFHT

Using data from a trio of orbiting X-ray telescopes, NASA's Chandra X-ray Observatory and Swift Satellite as well as ESA's XMM-Newton, researchers found evidence of a massive "tidal disruption event" (TDE). Tidal forces, due to the intense gravity from the black hole, can destroy an object - such as a star - that wanders too close. During a TDE, some of the stellar debris is flung outward at high speeds, while the rest falls toward the black hole. As it travels inward, and is ingested by the black hole, the material heats up to millions of degrees and generates a distinct X-ray flare.

These multiwavelength flares, which can be viewed by the satellites, help to study otherwise dormant massive back holes. Previous flares were short-lived, typically becoming very faint in a year, but this super-long X-ray flare has been persistently bright for close to a decade. The extraordinary long bright phase of this TDE means that either this was the most massive star ever to be torn apart during one of these events, or the first where a smaller star was completely torn apart.

The X-ray source containing this force-fed black hole, known by its abbreviated name of XJ1500+0154, is located in a small galaxy about 1.8 billion light years from Earth.

The X-ray data also indicates that radiation from material surrounding this black hole has consistently surpassed the so-called Eddington limit, defined by a balance between the outward pressure of radiation from the hot gas and the inward pull of the gravity of the black hole.

The conclusion that supermassive black holes can grow, from TDEs and perhaps other means, at rates above those corresponding to the Eddington limit has important implications. Such rapid growth may help explain how supermassive black holes were able to reach masses about a billion times higher than the sun when the universe was only about a billion years old.

Based on the modeling by the researchers the black hole's feeding supply should be significantly reduced in the next decade and begin to fade in the next several years.

###

A paper describing these results appears in the February 6 issue of the journal Nature Astronomy which can be viewed here: http://www.nature.com/articles/s41550-016-0033

Lin received support for this work from NASA (Chandra Award Number GO5-16087X). The Chandra X-ray Observatory is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA.

The University of New Hampshire is a flagship research university that inspires innovation and transforms lives in our state, nation and world. More than 16,000 students from all 50 states and 71 countries engage with an award-winning faculty in top ranked programs in business, engineering, law, liberal arts and the sciences across more than 200 programs of study. UNH's research portfolio includes partnerships with NASA, NOAA, NSF and NIH, receiving more than $100 million in competitive external funding every year to further explore and define the frontiers of land, sea and space.

Robbin Ray | EurekAlert!

More articles from Physics and Astronomy:

nachricht Supporting structures of wind turbines contribute to wind farm blockage effect
13.12.2019 | American Institute of Physics

nachricht Chinese team makes nanoscopy breakthrough
13.12.2019 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Uranium chemistry and geological disposal of radioactive waste

New insights using the diamond light

A new paper to be published on 16 December provides a significant new insight into our understanding of uranium biogeochemistry and could help with the UK's...

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Uranium chemistry and geological disposal of radioactive waste

16.12.2019 | Earth Sciences

New CRISPR-based system targets amplified antibiotic-resistant genes

16.12.2019 | Life Sciences

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>