Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two dimensional circuit with magnetic quasi-particles

22.01.2018

Whether smart phone, computer or dialysis machine – there is no electronic device without chips and their electronic components inside. The individual circuit elements are therefore often wired using three dimensional so called bridge constructions. Currently, physicists at Technische Universität Kaiserslautern are working on a more efficient variation, where specific quasiparticles named magnons instead of electrons are being used. They have shown for the first time, in an initial model, that magnon current flow is possible in an integrated magnon circuit, in which case the components are only being connected two dimensionally. These investigations have been published in ‘Science Advances’

A technical revolution came when the US engineer Jack Kilby developed the integrated circuit in the 1960s. Initially assembled in a pocket calculator, this technology enabled the triumph of the computer shortly thereafter, which from that point on came with smaller and smaller processors.


Classical integrated circuit (left) in contrast to integrated magnon circuit with two dimensional connections.

Credit: AG Hillebrands


Lead author Qi Wang

Credit: TUK/Koziel

“These circuits then set the stage for today’s consumer electronics” according to Associate Professor Andrii Chumak, who is a researcher with his own sub-group in the Magnetism Research Group lead by Professor Burkard Hillebrands in Department of Physics at Technische Universität Kaiserslautern (TUK). Kilby was awarded the Nobel prize for Physics in the year 2000 and is now referred to as the father of microchips.

In a current study, the lead author Qi Wang who is Dr. Chumak’s PhD student is working on a new generation of circuits. “Information can be transported in the form of intrinsic angular momentum” continues Chumak.

“These quantum particles are magnons.” They can transport significantly more information when compared to electrons and require substantially less energy, as well as produce less wasted heat. This makes them rather interesting, for example for faster and more efficient computers, particularly in mobile applications.

In the now published study, the scientists have for the first time described the so called magnon integrated circuit in which information is carried by way of these particles. In this case, conductors and line crossings are necessary to connect the individual switching elements, as in the case of electronic circuits. The researchers have managed to develop such a junction for magnons in their simulations.

“We have managed to include this phenomenon into our calculations which is already well-known in physics and will be placed into application for the first time in magnonics” according to Qi Wang. “When two magnon conductors are placed rather closely together, the waves communicate to a certain point with each other, this means, that the energy of the waves will be transferred from one conductor to the next.” This has been used in optics applications for quite some time, for example for the transportation of information between optical fibers.

The sub-group of Professor Hillebrands' Magnetism Group, the "Nano-Magnonic" team lead by Chumak, have harnessed this method for the wiring of circuit elements on a magnonic chip in a novel way. What is so special in these new simulated results, is that they can be used for junctions without any three dimensional bridge construction. This is necessary in classical electronics to guarantee the flow of electrons between several elements.

“In our circuits we use two dimensional connections, in which the magnon conductors only need to be placed close enough to each other” says Qi Wang. This connection point is referred to as a directional coupler. The researchers now intend to layout the first magnonic circuit with the help of this model.

For a future production of computer components these novel circuits could contribute significantly to saving material and, therefore, cost. In addition to that the size of the simulated components are within the nanometer regime, which is comparable to modern electronic components; however, the information density using magnons is significantly greater.

Professor Chumak was awarded one of the highest research funding grant, an ERC Starting Grant for his work in the area of Magnonics. The physicist and his PhD student Wang are also part of OPTIMAS, which is funded by the state of Rhineland Palatine.

The study was published in the renowned journal Science Advances: “Reconfigurable nanoscale spin-wave directional coupler”
DOI: 10.1126/sciadv.1701517

Questions can be directed at:

Juniorprof. Dr. Andrii Chumak
E-Mail: chumak[at]physik.uni-kl.de
Tel.: 0631 205-4203

Qi Wang
E-Mail: qiwang[at]rhrk.uni-kl.de
Tel.: 0631 205 3699

Melanie Löw | Technische Universität Kaiserslautern

More articles from Physics and Astronomy:

nachricht NTU Singapore scientists develop technique to observe radiation damage over femtoseconds
19.09.2019 | Nanyang Technological University

nachricht UMD-led study captures six galaxies undergoing sudden, dramatic transitions
19.09.2019 | University of Maryland

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

DGIST achieves the highest efficiency of flexible CZTSSe thin-film solar cell

19.09.2019 | Power and Electrical Engineering

NTU Singapore scientists develop technique to observe radiation damage over femtoseconds

19.09.2019 | Physics and Astronomy

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>