Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Top-5 achievements at the Princeton Plasma Physics Laboratory in 2015

13.01.2016

From launching the most powerful spherical tokamak on Earth to discovering a mechanism that halts solar eruptions, scientists at the U.S. Department of Energy's Princeton Plasma Physics Laboratory advanced the boundaries of clean energy and plasma science research in 2015. Here, in no particular order, are our picks for the Top-5 developments of the year:

1. Starting up the National Spherical Torus Experiment-Upgrade (NSTX-U)


From top left: 1.Magnetic island geometry revealing the mechanism for the density limit. (Reprinted with permission from Phys. Plasmas 22, 022514 2015); 2.Carlos Paz-Soldan and Raffi Nazikian advanced understanding of the control of heat bursts; 3.interior of the NSTX-U showing the completed center stack; 4.W7-X stellarator in Greifswald, Germany; 5.solar flare at the peak of the cycle in October, 2014, with no observed eruptions. Background: umbrella view of the interior of the NSTX-U.

Credit: Elle Starkman/PPPL; Lisa Petrillo/GA for Carlos Paz-Soldan and Raffi Nazikian

PPPL completed construction of the NSTX-U, the Laboratory's flagship fusion facility, doubling its heating and magnetic power and making it the most powerful spherical tokamak in the world. The machine is shaped like a cored apple, unlike conventional donut-shaped fusion facilities, and creates high plasma pressure with relatively low magnetic fields -- a highly cost-effective feature since magnetic fields are expensive to produce. The upgrade creates a flexible research platform that will enable physicists to directly address some of fusion's most outstanding puzzles.

2. Discovering a mechanism that halts solar eruptions

Solar eruptions are massive explosions of plasma and radiation from the sun that can be deadly for space travelers and can disrupt cell phone service and other crucial functions when they collide with the magnetic field that surrounds Earth. Researchers working on the Magnetic Reconnection Experiment (MRX), the world's premier device for studying the convergence and separation of magnetic fields in plasma, have discovered a previously unknown mechanism that causes eruptions to fail. The findings could prove highly valuable to NASA, which is eager to know when an eruption is coming and when the start of an outburst is just a false alarm.

3. First plasma on Germany's Wendelstein 7-X

On December 10, 2015, the Wendelstein 7-X (W7-X) stellarator produced its first plasma after 10 years of construction. PPPL, which leads the United States' collaboration in the German project and will conduct research on it, joined the worldwide celebration of the achievement. The Laboratory designed and delivered five barn-door size magnetic coils, together with power supplies, that will help shape the plasma during W7-X experiments. The Lab also designed and installed an X-ray diagnostic system that will collect vital data from the plasma in the machine. Stellarators are fusion facilities that confine plasma in twisty -- or 3D -- magnetic fields, compared with the symmetrical -- or 2D -- fields that tokamaks produce.

4. Enhanced model of the source of the density limit

Physicists have long puzzled over a mystery called the density limit -- a process that causes fusion plasmas to spiral apart when reaching a certain density and keeps tokamaks from operating at peak efficiency. Building on their past research, PPPL scientists have developed a detailed model of the source of this limitation. They've traced the cause to the runaway growth to bubble-like islands that form in the plasma and are cooled by impurities that stray plasma particles kick up from the walls of the surrounding tokamak. Researchers counter this heat loss by pumping fresh heat into the plasma, but even a tiny bit of net cooling in the islands can cause them to grow exponentially and the density limit to be reached. These findings could lead to methods to overcome the barrier.

5. Breakthrough in understanding how to control intense heat bursts

Scientist from General Atomics and PPPL have taken a key step in predicting how to control potentially damaging heat bursts inside a fusion reactor. In experiments on the DIII-D National Fusion Facility that General Atomics operates for the DOE in San Diego, the physicists built upon previous DIII-D research showing that these intense heat bursts -- called edge localized modes (ELMS) -- could be suppressed with tiny magnetic fields. But how these fields worked had been unclear. The new findings reveal that the fields can create two kinds of response, one of which allows heat to leak from the edge of the plasma at just the right rate to avert the heat bursts. The team also identified the changes in the plasma that lead to suppression of the bursts.

###

NSTX-U and DIII-D are DOE Office of Science User Facilities.

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas -- ultra-hot, charged gases -- and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media Contact

John Greenwald
jgreenwa@pppl.gov
609-243-2672

 @PPPLab

http://www.pppl.gov 

John Greenwald | EurekAlert!

Further reports about: Atomics Plasma Wendelstein 7-X magnetic fields

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>