Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Time measurement without a stopwatch

31.10.2018

Full time-dependent atomic response in strong laser fields reconstructed from spectral light analysis

The electronic charge oscillation driven by strong laser pulses can be reconstructed simply from a single recorded absorption spectrum. No pump or probe pulses as start and stop events are required. The new concept offers future applications in ultrafast chemistry and biological reactions. [Physical Review Letters, 26 October 2018]


Fig. 1: IR-modified dipole response of a He atom after excitation by an UV laser. The spectrum is connected with the time-dependent response via Fourier transform (FT).

Graphics: MPIK


Fig. 2: Reconstructed dipole response (blue) for three different IR pulse intensities. Theory: “ab initio” simulation (green), few-level model (orange), exponential decay (black dashed).

Graphics: MPIK

Understanding and control of ultrafast quantum dynamics in matter is one of the central challenges in modern physics. In most cases, the response of the system to an external perturbation, e.g. to excitation by a pump pulse, is measured in a pump-probe scheme: a first laser pulse triggers a dynamic process which is subsequently probed by a second pulse with variable delay.

Currently, this allows for a tracking of ultrafast motion down to timescales of femto- and attoseconds, i.e. the millionth or even billionth part of a billionth second. However, it remained difficult to measure bound electrons driven by intense laser fields in real time. This is possible by extracting the electrons’ wave-like charge oscillation also called dipole response.

Generally, a wave and its complementary spectrum – both mathematically connected via Fourier transform – are described by complex numbers with two real quantities: amplitude and phase. The first one relates to intensity, the latter to time.

If a system is excited by a very short laser pulse, a simple Fourier transform of the measured absorption spectrum allows to reconstruct the temporal evolution of the dipole response. This has already been known for weak light fields, the so-called linear-response regime.

Physicists from the Max Planck Institute for Nuclear Physics (MPIK) and the Vienna University of Technology (VUT) have now demonstrated that this concept can be generalised to the case of a strong additional laser pulse driving the dipole response of the electrons.

Figure 1 illustrates the experimental procedure realized by Veit Stooß in the group of Christian Ott and Thomas Pfeifer at MPIK: An ultrashort attosecond ultraviolet (UV) laser pulse (blue) is directly followed by an intense femtosecond infrared (IR) pulse (red), which modifies the dipole response (purple) of the sample, here a helium atom. The UV absorption spectrum, composed of the initial pulse plus the dipole response, is analysed (right). The strong-field driven time-dependent response can be reconstructed via Fourier transform of the measured spectrum.

Figure 2 shows the amplitude of the reconstructed dipole response (blue) of a specific doubly excited state in helium for three different intensities of the IR pulse in comparison with two theoretical models: A full “ab initio” simulation (green) by the group of Joachim Burgdörfer (VUT) and a few-level model (orange) by Veit Stooß and Stefano Cavaletto (Group of Christoph Keitel at MPIK).

Without the intense IR pulse, the dipole response would show just an exponential damping (black dashed line), i. e. the natural decay of the excited state by autoionization. During the interaction with the strong IR field (red shaded area) resonant coupling to other states leads to a modulation (Rabi oscillation) of the response.

At the highest intensity, the damping is enhanced due to strong-field ionisation which depletes the excited state faster than its natural decay. Here, the reconstructed response is still in good agreement with the full “ab initio” simulation, whereas the few-state model breaks down.

The origin for this discovered breakdown is the emergence of dynamical complexity above a critical intensity, where the number of contributing states “explodes”.

The time-domain reconstruction approach demonstrated here makes no assumption about the sample and should be generally applicable to complex systems like large molecules in solution, as well as for single-shot experiments using short-wavelength free-electron lasers. Furthermore, the concept is not even limited to laser fields and can be applied to any type of interaction.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Thomas Pfeifer
MPI for Nuclear Physics
E-mail: thomas.pfeifer@mpi-hd.mpg.de
Phone.: +49 6221 516-380

Hon.-Prof. Dr. Christoph H. Keitel
MPI for Nuclear Physics
E-mail: keitel@mpi-hd.mpg.de
Phone: +49 6221 516-150

Prof. Dr. Joachim Burgdörfer
Vienna University of Technology
E-mail: joachim.burgdöfer@tuwien.ac.at
Phone: +43 1-58801-13610

Originalpublikation:

Real-Time Reconstruction of Strong-Field-Driven Dipole Response
V. Stooß, S. M. Cavaletto, S. Donsa, A. Blättermann, P. Birk, C. H. Keitel, I. Březinová, J. Burgdörfer,
C. Ott, and T. Pfeifer
Physical Review Letters 121, 173005 (2018), DOI: https://doi.org/10.1103/PhysRevLett.121.173005

Weitere Informationen:

https://www.mpi-hd.mpg.de/mpi/de/pfeifer Division “Quantum Dynamics and Control“ at MPIK
https://www.mpi-hd.mpg.de/keitel Division “Theoretical Quantum Dynamics and Quantum Electrodynamics” at MPIK
https://tqd.itp.tuwien.ac.at Group “Theoretical Quantum Dynamics” at VUT

Dr. Bernold Feuerstein | Max-Planck-Institut für Kernphysik

More articles from Physics and Astronomy:

nachricht Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun
18.04.2019 | University of Warwick

nachricht In vivo super-resolution photoacoustic computed tomography by localization of single dyed droplets
18.04.2019 | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>