Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The material that obscures supermassive black holes

26.09.2017

Researchers afrom IAC, and the Institute of Astronomy of the Universidad Católica de Chile, review the most recent results on the material that obscures AGN

Black holes appear to play a fundamental role in how galaxies evolve throughout their life during a phase in which they are active and consume material from the galaxy itself. During this phase, the galaxy hosts an active galactic nucleus (AGN), and the effect that this nuclear activity produces in the galaxy is known as AGN feedback.


Galaxy NGC 1068 can be seen in close-up in this view from NASA's Hubble Space Telescope. This active black hole -shown as an illustration in the zoomed-in inset- is one of the most obscured known, as it is surrounded by extremely thick clouds of gas and dust that can be characterized using infrared and X-ray observations.

Credit: NASA/JPL-Caltech

This feedback can take place in different forms: the AGN can heat, disrupt, consume and remove the gas available to form new stars, preventing further galaxy growth. In fact, AGN feedback is now required by simulations of galaxy formation to explain the observations of massive galaxies at cosmological distances. "If AGN feedback is not accounted for in the simulations", explains Cristina Ramos, "the predicted number of massive galaxies when the universe was younger is much higher than those that are observed".

Directly studying the influence of nuclear activity on galaxy evolution is challenging because of the different spatial scales and timescales involved in the two processes. Massive galaxies host extremely compact supermassive black holes of millions or even billions of solar masses in their nuclei.

It is estimated that the phases of nuclear activity last for a short period of time, between one and a hundred million years, whereas galaxy evolution processes, such as bulge growth or bar formation last much longer.

Thus, in order to study the connection between the AGN and the host galaxy, "we need," explains Claudio Ricci, "to look at the nucleus of galaxies, where the material that links them is found. This material consists mainly of gas and dust, which are normally studied in the infrared and X-ray band."

In this review, Cristina Ramos Almeida, researcher at the Instituto de Astrofísica de Canarias (IAC), and Claudio Ricci, astrophysicist at the Institute of Astronomy of the Universidad Católica de Chile, tried to give a comprehensive view of the current understanding, thanks to infrared and X-ray studies, of nuclear obscuration in AGN.

This has greatly improved in the last decade thanks to observing facilities such as CanariCam on the Gran Telescopio CANARIAS (GTC), located at the Roque de los Muchachos Observatory (Garafía, La Palma) and the Very Large Array Interferometer (VLTI) in the infrared range, as well as X-ray satellites like NuSTAR, Swift/BAT and Suzaku.

"We now know", adds Cristina Ramos, "that this nuclear material is more complex and dynamic than we thought a few years ago: it is very compact, formed by gas and dusty clouds orbiting the black hole and its properties depend on the AGN luminosity and accretion rate.

Moreover, it is not an isolated structure but appears connected with the galaxy via outflows and inflows of gas, like streams of material flowing as part of a cycle. This gas flow cycle keeps feeding the black hole and regulates the formation of new stars in the galaxy".

Very recently, the Atacama Large Millimeter/submillimeter Array (ALMA) has recently imaged for the first time the nuclear obscuring material in an active galaxy. ALMA operates in the millimiter and sub-millimeter range, and the latter traces the coolest dust and gas surrounding AGN. In the case of the galaxy NGC 1068, ALMA has shown that this material is distributed in a very compact disc-like shape of 7-10 parsecs (pc) diameter and, in addition to the regular rotation of the disk, there are non-circular motions that correspond to high-velocity gas outflowing from the galaxy nucleus.

"Over the next decade, the new generation of infrared and X-ray facilities will contribute greatly to our understanding of the structure and physical properties of the nuclear material", concludes Claudio Ricci.

Media Contact

Elena Mora
emora@iac.es

http://www.iac.es/?lang=en 

Elena Mora | EurekAlert!

More articles from Physics and Astronomy:

nachricht Gravitational waves will settle cosmic conundrum
15.02.2019 | Simons Foundation

nachricht Spintronics by 'straintronics'
15.02.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>