Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Suzaku finds common chemical makeup at largest cosmic scales

27.10.2015

A new survey of hot, X-ray-emitting gas in the Virgo galaxy cluster shows that the elements needed to make stars, planets and people were evenly distributed across millions of light-years early in cosmic history, more than 10 billion years ago.

The Virgo cluster, located about 54 million light-years away, is the nearest galaxy cluster and the second brightest in X-rays. The cluster is home to more than 2,000 galaxies, and the space between them is filled with a diffuse gas so hot it glows in X-rays.


Suzaku mapped iron, magnesium, silicon and sulfur in four directions all across the Virgo galaxy cluster for the first time. The northern arm of the survey (top) extends 5 million light-years from M87 (center), the massive galaxy at the cluster's heart. Ratios of these elements are constant throughout the cluster, which means they were mixed well early in cosmic history. The dashed circle shows what astronomers call the virial radius, the boundary where gas clouds are just entering the cluster. Some prominent members of the cluster are labeled as well. The background image is part of the all-sky X-ray survey acquired by the German ROSAT satellite. The blue box at center indicates the area shown in the visible light image.

Credits: A. Simionescu (JAXA) and Hans Boehringer (MPE)

Using Japan's Suzaku X-ray satellite, a team led by Aurora Simionescu, an astrophysicist at the Japan Aerospace Exploration Agency (JAXA) in Sagamihara, acquired observations of the cluster along four arms extending up to 5 million light-years from its center.

"Heavier chemical elements from carbon on up are produced and distributed into interstellar space by stars that explode as supernovae at the ends of their lifetimes," Simionescu said. This chemical dispersal continues at progressively larger scales through other mechanisms, such as galactic outflows, interactions and mergers with neighboring galaxies, and stripping caused by a galaxy's motion through the hot gas filling galaxy clusters.

Supernovae fall into two broad classes. Stars born with more than about eight times the sun's mass collapse under their own weight and explode as core-collapse supernovae. White dwarf stars may become unstable due to interactions with a nearby star and explode as so-called Type Ia supernovae.

These different classes of supernovae produce different chemical compositions. Core-collapse supernovae mostly scatter elements ranging from oxygen to silicon, while white dwarf explosions release predominantly heavier elements, such as iron and nickel.

Surveying the distribution of these elements over a vast volume of space, such as a galaxy cluster, helps astronomers reconstruct how, when, and where they were produced. Once the chemical elements made by supernovae are scattered and mixed into interstellar space, they become incorporated into later generations of stars.

The overall composition of a large volume of space depends on the mix of supernova types contributing to it. For example, accounting for the overall chemical makeup of the sun and solar system requires a mix of roughly one Type Ia supernova for every five core-collapse explosions.

"One way to think about this is that we're looking for the supernova recipe that produced the chemical makeup we see on much larger scales, and comparing it with the recipe for our own sun," said co-author Norbert Werner, a researcher at the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) at Stanford University in California.

In an earlier study led by Werner, Suzaku data showed that iron was distributed uniformly throughout the Perseus Galaxy Cluster, but information about lighter elements mainly produced by core-collapse supernovae was unavailable. The Virgo Cluster observations supply the missing ingredients. Reporting their findings in the Oct. 1 issue of The Astrophysical Journal Letters, Simionescu and her colleagues show they detect iron, magnesium, silicon and sulfur all the way across a galaxy cluster for the first time. The elemental ratios are constant throughout the entire volume of the cluster and roughly consistent with the composition of the sun and most of the stars in our own galaxy.

Because galaxy clusters cover enormous volumes of space, astronomers can use one example to extrapolate the average chemical content of the universe. The study shows that the chemical elements in the cosmos are well mixed, showing little variation on the largest scales. The same ratio of supernova types -- the same recipe -- thought to be responsible for the solar system's makeup was at work throughout the universe. This likely happened when the universe was between 2 and 4 billion years old, a period when stars were being formed at the fastest rate in cosmic history.

"This means that elements so important to life on Earth are available, on average, in similar relative proportions throughout the bulk of the universe," explained Simionescu. "In other words, the chemical requirements for life are common throughout the cosmos."

Launched on July 10, 2005, Suzaku was developed at the Institute of Space and Astronautical Science (ISAS) in Japan, which is part of JAXA, in collaboration with NASA and other Japanese and U.S. institutions. NASA's Goddard Space Flight Center in Greenbelt, Maryland, supplied Suzaku's X-ray telescopes and data-processing software, and operated a facility supporting U.S. astronomers who used the satellite.

Suzaku operated for 10 years -- five times its target lifespan -- to become the longest-functioning Japanese X-ray observatory. On Aug. 26, JAXA announced the end of the mission due to the deteriorating health of the spacecraft.

"Suzaku provided us with a decade of revolutionary measurements," said Robert Petre, chief of Goddard's X-ray Astrophysics Laboratory. "We're building on that legacy right now with its successor, ASTRO-H, Japan's sixth X-ray astronomy satellite, and we're working toward its launch in 2016."

Francis Reddy | EurekAlert!

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>