Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stagediving with biomolecules improves optical microscopy

02.05.2018

Physicists from Dresden and Würzburg have developed a novel method for optical microscopy. Using biological motors and single quantum dots, they acquire ultra-high-resolution images.

The resolution of conventional optical microscopy is limited by the fundamental physical principle of diffraction to about one half of the wavelength of the light: If the distance between two objects is smaller than this so-called "diffraction limit", they can no longer be visually separated - their image appears "blurred ". To acquire optical images at the scale of few nanometers, this is clearly not sufficient.


Microtubules, gliding through the optical near field (blue) of a nanostructured gold surface. The quantum dots (green) react to the local field by increasing their fluorescence rate.

Graphic: Heiko Groß

Nano-probes migrate over surfaces

For this reason, scientists worldwide have developed elaborate concepts in the past in order to circumvent the diffraction limit and thus to increase the resolution. However, the technical effort needed to do so is considerable and usually highly specialized microscope assemblies are required.

In particular, the investigation of optical near fields still represents a great challenge, because they are so strongly localized that they cannot send waves to a distant detector.

In a new study, physicists from the Julius-Maximilians-Universität Würzburg (JMU) and the Technische Universität Dresden now show that it is possible to measure these near-fields with significantly less effort. They used a biomolecular transport system to slide many extremely small optical nano-probes over a surface. They present their results in the current issue of the renowned journal Nature Nanotechnology.

Intracellular molecules used as transport system

"As probes we used so-called quantum dots - small fluorescent particles a few nanometers in size," says Professor Bert Hecht, describing the physicists' approach. Hecht holds the Chair of Experimental Physics (Biophysics) at the JMU; and jointly supervised the project together with Professor Stefan Diez, Chairholder of BioNanoTools at the B CUBE - Center for Molecular Bioengineering at TU Dresden.

So-called motor proteins and microtubules make the quantum dots pass over the object to be examined. "These two elements are among the fundamental components of an intracellular transport system," explains Diez. "Microtubules are tubular protein complexes, up to several tenths of millimeters long, that form a major network of transport routes inside cells. Motor proteins run along these routes, transporting intracellular loads from one place to another," says the scientist.

Motor proteins provide the driving force

The physicists from Würzburg and Dresden took advantage of this concept, but in reverse order: "The motor proteins are fixed to the sample surface and pass the microtubules over them - a kind of 'stagediving' with biomolecules," says Heiko Groß, PhD student in the Hecht group. The quantum dots serving as optical probes are attached to the microtubules and move together with their carrier.

Since a single quantum dot would take a very long time to scan a large surface area, the researchers used large amounts of quantum dots and motor proteins which move at the same time and thus scan a large area in a short time. "Using this principle, we can measure local light fields over a large area with a resolution of less than five nanometers using a setup that resembles a classical optical microscope," explains the physicist. By comparison, one nanometer equals one millionth of a millimeter.

Test on a thin layer of gold

The physicists tested their method on a thin layer of gold with narrow slits less than 250 nanometers wide. These slots have been illuminated from below with blue laser light. "Light passing through these narrow gaps is limited to the gap width, making it ideal for demonstrating high-resolution optical microscopy," says Gross.

During the measurement, a "swarm of microtubules" simultaneously glides in different directions across the surface of the gold layer. Using a camera, the position of each transported quantum dot can be exactly determined at defined time intervals. If a quantum dot now moves through the optical near-field of a slit, it lights up more strongly and therefore acts as optical sensor. Since the diameter of the quantum dot is only a few nanometers, the light distribution within the slot can be determined extremely precisely, thus circumventing the diffraction limit.

Ten times higher accuracy

Another nice feature of this novel approach is that due to its length and strength a microtubule moves in an extremely straight and predictable fashion across the motor-coated sample surface. "This makes it possible to determine the position of the quantum dots ten times more accurately than with previously established high-resolution microscopy methods," explains Dr. med. Jens Ehrig, former postdoctoral fellow in the Diez group and current head of the "Molecular Imaging and Manipulation" facility at the Center for Molecular and Cellular Bioengineering (CMCB) of the TU Dresden. Furthermore, disturbances caused by artifacts due to near-field coupling can be excluded. Since the transport system consists of only a few molecules, its influence on the optical near fields is negligible.

The researchers hope to use their idea to establish a new technology in the field of surface microscopy. In any case, they are convinced that: "This type of microscopy can demonstrate its strengths, especially in the optical inspection of nanostructured surfaces." In a next step, they now want to use this molecular transport system to couple quantum dots to specifically prepared optical near field resonators to study their interaction.

Heike Gross, Hannah S. Heil, Jens Ehrig, Friedrich W. Schwarz, Bert Hecht, Stefan Diez: Parallel mapping of optical near-field interactions by molecular motor-driven quantum dots. Nature Nanotechnology

Contact

Heiko Groß and Prof. Dr. med. Bert Hecht, Physics Institute of the University of Würzburg, T +49 931 31-85863, hecht@physik.uni-wuerzburg.de

Dr. Jens Ehrig and Prof. Dr. med. Stefan Diez, B CUBE - Center for Molecular Bioengineering, TU Dresden, T +49 (351) 463 43010, stefan.diez@tu-dresden.de

Weitere Informationen:

http://dx.doi.org/10.1038/s41565-018-0123-1 The Original Paper

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>