Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing sound

08.11.2011
National Physical Laboratory develops noninvasive method to visualise sound propagation and help sound engineers design out dead spots

High-performance loudspeaker manufacturers have been able to improve sound quality dramatically over the years, but still face the issue of dead spots.

While HIFI loudspeakers can be designed to deliver the full frequency range of audible sound, it is difficult to achieve a smooth frequency output in all directions. Dead spots are caused by deconstructive interference as a result ofradiating sound waves overlapping and cancelling each other out.

The biggest issue being where the sound is radiating from two or more sources, which commonly occurs in the mid-frequency ranges where both the 'woofer' and 'tweeter' loudspeaker cones are both active. This creates areas where the frequency response of the loudspeaker is less smooth, and sound quality is diminished.

Determining the nature of these dead spots has proven difficult until now. High accuracy acoustic measurements can be made using a microphone, but to build up a picture of the spatial distribution of the sound many point measurements are required within the 3D space.

Manufacturers can conduct computer-aided simulations, but these can prove inaccurate to the actual loudspeaker performance through the variability of the manufacturing process.

Now The National Physical Laboratory (NPL), the UK's Measurement Institute, has developed a solution. The new laser-driven technique allows remote, non-invasive and rapid mapping of sound fields, which will provide loudspeaker manufacturers with reliable data on which to design their technology.

The technique builds on a piece of technology developed for the study of mechanical vibration; the laser vibrometer, and on research for its application to the 3D characterisation of underwater sonar arrays. This NPL work has shown that in air, the acousto-optic effect, the resulting optical phase change of light as it passes through an acoustic field, is significant enough to be detected. To measure the acoustic output from the loudspeaker, the laser is positioned to the side of the loudspeaker and is rapidly scanned through a series of points in front of the loudspeaker, being reflected back to the laser vibrometer by virtue of a retro-reflective mirror on the other side. By measuring the laser as it returns to its source, the technology can rapidly provide spatially distributed phase shift data, enabling an image, or video, of sound propagation around the source to be constructed.

Ian Butterworth, project lead at NPL, said: "This is a significant breakthrough for loudspeaker manufacturers. By having actual data to rely on, they will be able to better understand how different designs impact the loudspeaker's directionality, and design out the dead spots which could limit the quality of the loudspeaker."

"The main applications are likely to be for high-end in-home loudspeaker manufacturers who want their products to deliver the perfect surround sound experience, and outdoor loudspeaker manufacturers who want to eliminate the noticeable spatial changes in levels experienced at music festivals and other live events."

"We're now looking to conduct further studies, scanning larger areas with higher definition, to get a better picture of how sound is propagating away from these loudspeakers."

The measurement technique should ideally be performed in conditions that minimise sound reflection, such as NPL's hemi-anechoic chamber. However measurements can also be carried out outdoors given the natural hemi-anechoic nature of fields.

See an explanation and example scan here:
http://www.youtube.com/watch?v=VRq1vc00R7s

The National Physical Laboratory (NPL) is one of the UK's leading science facilities and research centres. It is a world-leading centre of excellence in developing and applying the most accurate standards, science and technology available.

NPL occupies a unique position as the UK's National Measurement Institute and sits at the intersection between scientific discovery and real world application. Its expertise and original research have underpinned quality of life, innovation and competitiveness for UK citizens and business for more than a century:

NPL provides companies with access to world leading support and technical expertise, inspiring the absolute confidence required to realise competitive advantage from new materials, techniques and technologies

NPL expertise and services are crucial in a wide range of social applications - helping to save lives, protect the environment and enable citizens to feel safe and secure. Support in areas such as the development of advanced medical treatments and environmental monitoring helps secure a better quality of life for all NPL develops and maintains the nation's primary measurement standards, supporting an infrastructure of traceable measurement throughout the UK and the world, to ensure accuracy and consistency.

Joe Meaney | EurekAlert!
Further information:
http://www.npl.co.uk/acoustics

Further reports about: NPL Seeing measurement medical treatment quality of life sound quality sound wave

More articles from Physics and Astronomy:

nachricht Physicists edge closer to controlling chemical reactions
11.12.2018 | Moscow Institute of Physics and Technology

nachricht UA-led OSIRIS-REx discovers water on asteroid, confirms Bennu as excellent mission target
11.12.2018 | University of Arizona

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Some brain tumors may respond to immunotherapy, new study suggests

11.12.2018 | Studies and Analyses

Researchers image atomic structure of important immune regulator

11.12.2018 | Health and Medicine

Physicists edge closer to controlling chemical reactions

11.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>