Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small Optical Force Can Budge Nanoscale Objects

19.11.2009
With a bit of leverage, Cornell researchers have used a very tiny beam of light with as little as 1 milliwatt of power to move a silicon structure up to 12 nanometers. That’s enough to completely switch the optical properties of the structure from opaque to transparent.

The technology could have applications in the design of micro-electromechanical systems (MEMS) – nanoscale devices with moving parts – and micro-optomechanical systems (MOMS) which combine moving parts with photonic circuits, said Michal Lipson, associate professor of electrical and computer engineering.

The research by postdoctoral researcher Gustavo Wiederhecker, Long Chen Ph.D. ’09, Alexander Gondarenko, Ph.D. ’10, and Lipson appears now in the online edition of the journal Nature and will appear in a forthcoming print edition.

Light can be thought of as a stream of particles that can exert a force on whatever they strike. The sun doesn’t knock you off your feet because the force is very small, but at the nanoscale it can be significant. “The challenge is that large optical forces are required to change the geometry of photonic structures,” Lipson explained.

But the researchers were able to reduce the force required by creating two ring resonators – circular waveguides whose circumference is matched to a multiple of the wavelength of the light used – and exploiting the coupling between beams of light traveling through the two rings.

A beam of light consists of oscillating electric and magnetic fields, and these fields can pull in nearby objects, a microscopic equivalent of the way static electricity on clothes attracts lint. This phenomenon is exploited in “optical tweezers” used by physicists to trap tiny objects. The forces tend to pull anything at the edge of the beam to be pulled toward the center.

When light travels through a waveguide whose cross-section is smaller than its wavelength some of the light spills over, and with it the attractive force. So parallel waveguides close together, each carrying a light beam, are drawn even closer, rather like two streams of rainwater on a windowpane that touch and are pulled together by surface tension.

The researchers created a structure consisting of two thin, flat silicon nitride rings about 30 microns (millionths of a meter) in diameter mounted one above the other and connected to a pedestal by thin spokes. Think of two bicycle wheels on a vertical shaft, but each with only four thin, flexible spokes. The ring waveguides are three microns wide and 190 nanometers (nm – billionths of a meter) thick, and the rings are spaced 1 micron apart.

When light at a resonant frequency of the rings, in this case infrared light at 1533.5 nm, is fed into the rings, the force between the rings is enough to deform the rings by up to 12 nm, which the researchers showed was enough to change other resonances and switch other light beams traveling through the rings on and off. When light in both rings is in phase – the peaks and valleys of the wave match – the two rings are pulled together. When it is out of phase they are repelled. The latter phenomenon might be useful in MEMS, where an ongoing problem is that silicon parts tend to stick together, Lipson said.

An application in photonic circuits might be to create a tunable filter to pass one particular optical wavelength, Wiederhecker suggested.

The work is supported by the National Science Foundation (NSF) and the Cornell Center for Nanocale Systems. Devices were fabricated at the Cornell NanoScale Science and Technology Facility, also supported by NSF.

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Physics and Astronomy:

nachricht Physicists trap light in nanoresonators for record time
23.01.2020 | ITMO University

nachricht Colloidal Quantum Dot Photodetectors can now see further than before
21.01.2020 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Physicists trap light in nanoresonators for record time

23.01.2020 | Physics and Astronomy

The easy route the easy way: New chip calculates the shortest distance in an instant

23.01.2020 | Information Technology

DYNAFLEX® at e-World 2020

23.01.2020 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>